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Abstract

Efficient data management techniques are needed in

Wireless Sensor Networks (WSNs) to counteract issues re-

lated to limited resources, e.g. energy, memory, bandwidth,

as well as limited connectivity. Self-organizing and coop-

erative algorithms are thought to be the optimal solution

to overcome these limitations. On an abstract level, struc-

tured peer-to-peer protocols provide O(1) complexity for

storing and retrieving data in the network. However, they

rely on underlayer routing techniques. In this paper, we

present the Virtual Cord Protocol (VCP), a virtual relative

position based efficient routing protocol that also provides

means for data management, e.g. insert, get, and delete, as

known from typical Distributed Hash Table (DHT) services.

The key contributions of this protocol are independence of

real location information by relying on relative positions of

neighboring nodes, short virtual paths because successors

and predecessors are in their vicinity, and high scalability

because only information about direct neighbors is needed

for routing. Furthermore, VCP inherently prevents dead-

ends and it is easy to be implemented.

1 Introduction

Wireless Sensor Networks (WSNs) provide an interest-

ing research domain because they represent a class of mas-

sively distributed systems in which nodes are required to

work in a cooperative and self-organized fashion to over-

come scalability problems [2]. Additionally, WSNs are fac-

ing strong resource limitations as a large number of sen-

sor nodes with strong CPU, energy, and bandwidth restric-

tions need to be operated to build stable and operational

networks. This includes the need to solve problems with

high dynamics introduced by joining and leaving nodes. As

of today, WSNs are used in a wide range of applications

such as wildlife monitoring, disaster prediction and man-

agement, health care, precision agriculture, and intelligent

homes [6, 7].

In many cases the produced sensor data is enormous,

thus an efficient data management is essential. There are

several methods to retrieve data from a network. One

method is to use a central server that maintains the current

location of data items. Thus, all requests are directed to the

server that returns the current location of the data item. An-

other method is to use flooding search. Thus, to retrieve a

data item, the network is flooded with the request and a cer-

tain number of nodes is queried whether or not they have

stored the data item. The drawbacks of the central server

approach are that the server represents a single point of fail-

ure and that it provides a possible bottleneck reducing the

scalability. On the other hand, the flooding approach con-

sumes high communication power and search results are not

guaranteed if the requests are restricted to a limited number

of hops.

Distributed Hash Tables (DHTs) [20] ensure O(1) com-
plexity to insert and lookup data items. Moreover they work

in a distributed and self-organized manner. These charac-

teristics make them attractive for use in WSNs. The main

idea is simple: Data items are associated with numbers and

each node in the network is responsible for a range of these

numbers. Therefore, it is easy to find the node at which

a data item is stored. Usually, DHTs are built on the ap-

plication layer and rely on an underlying routing protocol

that provides connectivity between the nodes. Systems like

Chord [21], Pastry [18], and CAN [15] have been imple-

mented to work on the Internet for scalable file sharing ap-

plications. The nodes communicate taking advantage of the

already existing routing protocols on the Internet.

Implementing DHTs in WSNs as an overlay and relying

on typical Mobile Ad Hoc Network (MANET) routing pro-

tocols [1] (best known examples are DSR [8], DSDV [12],

or AODV [13]) has the drawback that these routing proto-

cols already need to maintain globally valid topology in-

formation of the entire network. This cannot scale well be-

cause additional overhead is needed to maintain the overlay.

133



In addition, the DHTs have not been designed to take advan-

tage of physically neighboring nodes. On the other hand,

routing protocols that use geographic location like Greedy

Perimeter Stateless Routing (GPSR) [9] and Geographic

Routing Without Location Information (GRWLI) [14] can

scale well. Unfortunately, obtaining the location is not only

costly and susceptible to localization errors, but also is not

always available and greedy forwarding cannot guarantee

reachability of all destinations because of possible dead

ends [11].

This paper presents the Virtual Cord Protocol, a DHT-

like protocol that offers in addition to standard DHT func-

tions (e.g., insert, get, and delete) an efficient routing mech-

anism [3]. The key important characteristics of this protocol

besides the efficient routing are:

• The successors and predecessors of a node are in its
direct vicinity, which reduces the communication load

when nodes join and leave the network.

• The exact physical location is not required, which can
be expensive in terms of communication or system re-

quirements. Instead, we use an easy-to-be-obtained

relative position.

• VCP is scalable because it only needs information
about direct neighbors for routing.

• Greedy routing on the cord always leads to a path to
the destination (it cannot suffer from packets getting

stuck in dead-ends).

• The protocol is easy to be implemented on top of the
MAC layer.

The rest of the paper is organized as follows. In Sec-

tion 2, we outline relevant related work. In Section 3,

an overview to the working principles of our Virtual Cord

Protocol (VCP) protocol is presented. Afterwards, the im-

plementation and selected evaluation results are presented

in Section 4. This also includes a comparison to a typi-

cal MANET routing protocol to evaluate the routing perfor-

mance of our VCP protocol. Finally, Section 5 concludes

the paper.

2 Related work

DHT based approaches that are targeted to manage data

in WSNs can be classified in three main categories: real lo-

cation based, virtual location based, and location indepen-

dent. Geographic Hash Tables (GHTs) [16, 17] hash keys

into geographic locations, so the data items are stored on the

sensor node geographically nearest the hash of its key. They

replicate the stored data locally to ensure persistence when

nodes fail. Like ordinary DHTs, GHTs are built as over-

lays and rely on underlay routing. In fact, it uses GPSR [9]

for routing. GPSR uses the physical location of nodes for

routing purposes. Thus, it is assumed that all nodes in the

network know their location. Since greedy forwarding rout-

ing mode fails in case of voids (even in static networks),

GPSR uses another mode for routing, which uses a planar

subgraph without crossing edges. In comparison, VCP fo-

cuses on efficient routing on a virtual cord. It features a

pre-defined hashing range that allows applications to clearly

associate data items to places in the cord.

A virtual coordinate routing protocols is GRWLI [14].

Unlike GPSR, this routing protocol does not use real coor-

dinates, which is costly, not available in many situations,

and susceptible to localization errors. Instead, it consti-

tutes an n-dimensional virtual coordinate system. The con-
struction of the coordinates is based on finding the perime-

ter nodes and their locations, if they are not pre-defined.

Then, a relaxation algorithm is used to find the virtual lo-

cation of the nodes in the network. However, the draw-

back of having many dimensions resulting from a large n is
that forming virtual coordinates requires a long time to con-

verge [10]. Subsequently, it consumes more communica-

tion power. Again, the problem of possible dead ends exists

here, so the greedy forwarding algorithm can not guarantee

reaching the correct destination.

Virtual Ring Routing (VRR) [4] is a routing protocol in-

spired by overlay DHTs. Besides the routing, it provides

traditional DHT functionality. VRR uses a unique key to

identify nodes. This key is a location independent inte-

ger. VRR organizes the nodes into a virtual ring in order

of increasing identifiers. For routing purposes, each node

maintains a set of virtual neighbors of cardinality r that are
nearest to node identifier in the virtual ring. Each node

also maintains a physical neighbor set with the identifiers

of nodes that it can communicate with directly. A routing

table entry identifies the next hop towards virtual neighbor.

This information is maintained proactively, i.e. it is main-

tained even when there is no traffic along the path. The

forwarding algorithm used by VRR is quite simple. VRR

picks the node with the identifier closest to the destination

from the routing table and forwards the message towards

that node. The problem of such protocols is that the adja-

cent nodes in ring can be far away in the real network. As

a result, forwarding to the nearest node can result in a very

long path. Moreover the scalability is a problem because,

as the network gets larger, the protocol needs to maintain

routing tables of increasing size.

In the hop id routing scheme [23], each node maintains

a hop id, which is a multidimensional coordinate based on

the distance to some landmark nodes. Fundamentally, land-

marks can be randomly selected in the network. However,

to obtain better performance and reduce the effect of dead
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ends, the authors present several methods for landmark se-

lection. To construct and maintain the hop id system, three

basic steps should be followed. First, a voluntary node

floods the entire network to build a shortest path tree rooted

at this node. Then, landmarks are selected. Finally, each

node adjusts its hop id periodically and broadcasts its new

hop id using a hello message. To deal with dead ends when

greedy forwarding fails, a landmark guided detour is de-

signed and is applied with an expanding ring search algo-

rithm to route out of dead ends.

3 Virtual Cord Protocol

As stated previously, Virtual Cord Protocol (VCP) is

a DHT-like protocol. All data items are associated with

numbers in a pre-determined range [S, E] and the available
nodes capture this range. Thus, each node captures a part of

the entire range.

3.1 Joining operation

We employ hello messages to discover the network

structure, i.e. all neighboring nodes and their position in

the cord. In the current implementation of VCP, the hello

messages are transmitted by means of broadcasting, i.e.

each node broadcasts a hello every T seconds. Basi-
cally, the joining operation can also be executed using an

on-demand mechanism, which has advantages in static net-

works or those with a high density.

Based on the hellomessages, the joining node gets in-

formation about its physical neighbors and their adjacent

nodes. The first node is pre-programmed with the smallest

value of the entire range (S, for “start”). The second node
joining the network gets the largest number of this range

(E, for “end”). The basic join algorithm is shown in Algo-
rithm 1.

Each further node joining the network has to received

at least with one hello message from a node that already

exist in the network to get a relative position, i.e. its value,

in the cord. If a node can communicate with an end node,

i.e. a node which has either S or E position, the new node
gets this end value (S or E), i.e. its position. The old node
gets a new position between the end value and its successor

or predecessor depending on the its old position (we use the

function position() in Algorithm 1 for this purpose). The

new node becomes predecessor of the old node if it received

position S, otherwise it becomes successor.
If a node can communicate with two adjacent nodes in

the cord, the new node gets a position between the values of

the two adjacent nodes (again using position()). Addition-

ally, the new node becomes successor of the old node with

the lower position value and predecessor to the node that

has the higher position value.

Finally, if the new node can communicate with only one

node in the network, then the new node asks that node to

create a virtual node. This virtual node gets a position be-

tween the position of the real node and its successor or pre-

decessor. The new joining node can now get a position be-

tween the position of the real node and the position of the

virtual node.

Algorithm 1 VCP join algorithm

Require: One node must be pre-programmed as initial

node, i.e. it gets position S; all nodes in the cord pe-
riodically send hello messages

1: if NeighbourPosition = S then
2: MyPosition← S
3: Successor← Neighbour
4: Predecessor ← NULL
5: if NeighbourSuccessor = NULL then
6: NewNeighbourPosition← E
7: else

8: NewNeighbourPosition← position(S,
NeighbourSuccessorPosition)

9: end if

10: SendUpdatePredecessor(Neighbour,
NewNeighbourPosition)

11: else if NeighbourPosition = E then
12: MyPosition← E
13: Successor← NULL
14: Predecessor ← Neighbour
15: NewNeighbourPosition←

position(NeighbourPredecessorPosition,E)
16: SendUpdateSuccessor(Neighbour,

NewNeighbourPosition)
17: else if Neighbour1 is predecessor to Neighbour2
then

18: MyPosition← position(Neighbour1Position,
Neighbour2Position)

19: Predecessor ← Neighbour1
20: Successor← Neighbour2
21: SendUpdateSuccessor(Neighbour1)
22: SendUpdatePredecessor(Neighbour2)
23: else

24: CreateVirtualNode(Neighbour)
25: end if

Figure 1 (left) shows the joining process of six nodes.

The outer circle indicates the communication range of the

newly joining node. Figure 1 (right) depicts the network

after adding 15 nodes. In this example, a range of [0, 1] for
the virtual addresses is assumed. Note that when the fifth

node joins the network, it finds two adjacent nodes (node

0.5 and 0.75). So it becomes the successor of the first node

(0.5) and predecessor of the other node (0.75). The new

address is a number between 0.5 and 0.75. However, when
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Figure 1. Basic join operation in VCP (left) and resulting routing paths (right)

the sixth node joins the network, nodes 0.5 and 0.75 are no

longer adjacent. Thus, it asks node 0.5 to create a virtual

node as shown in Figure 2. The arrow indicates the nodes

are adjacent in the virtual cord.
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Figure 2. Operation of creating virtual node

It is clear that the joining of a new node only affects a

small number of nodes in the vicinity and it is independent

of the total number of nodes in the network. In fact, the

insertion of a new node only affects O(m), where m is the
number of successors.

3.2 Routing

For routing, each node has to know its successor and pre-

decessor as well as the physical neighbors. Then a greedy

algorithm is employed to send packets to the node of the

physical neighbors that has the closest position to the desti-

nation until there is no more progress and the value lies be-

tween the positions of the predecessor and successor. VCP

inherently relies on a previously established cord. There-

fore, greedy routing will always lead to a path to the des-

tination – it is not possible to run into a dead end. Addi-

tionally, VCP allows to take shortcuts whenever a physical

neighbor with a virtual number is available that is closer to

the destination.

For example, if node 0.25 in Figure 1 produces a data

item, then it has to hash this item to the correspondent hash

value. Continuing with our example, we assume a hash

value of 0.781. Thus, node 0.25 will forward the message

towards the destination node, i.e. in our case to node 0.5,

which has the closest position to the value (0.781) among

the physical neighbors. Afterwards, node 0.5 will send it

to node 0.75, then node 0.75 will send it to node 0.78 as

shown in Figure 1 (right). Node 0.78 will finally store the

data and will not send it any more because there is no more

progress possible and the value lies between the positions

of the predecessor and the successor.

3.3 Node failures

We assume that node failures can be detected if a node

(successor or predecessor) does no longer communicate. In

our case, the periodic hello can be exploited for this op-

eration. Moreover, the responsible nodes for the data items

of the failed node are the predecessor and successor. Differ-

ent treatments can be performed to overcome the problem

of node failure depending on the situation.

1. If an end node fails (i.e., either S or E), then the suc-
cessor or predecessor gets the end position.

2. If the successor and predecessor of the failed node can

communicate directly (including its virtual nodes if ex-
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isting), then it is easy to recuperate the cord by mark-

ing the predecessor and successor of the failed node as

adjacent.

3. If the network gets partitioned, two virtual cords are

created until a new node re-connects the network.

The effects of node failure can be diminished by replica-

tion on the successors and predecessors, which is also used

in most DHT approaches. The advantage here is that the

successors and predecessors are in the local vicinity. Thus,

it will not demand too much communication overhead. So,

if a node receives a packet that contains a request from its

failed adjacent node then, by means of replication, the data

is also available on this node locally. Similarly, a node can

store the data item locally, if it received a data item that

should be forwarded to the failed successor or predecessor

and lies between its position and the position of the failed

node.

In case of a packet that has to pass through the failed

node to reach its destination, the routing algorithm has to

be modified as follows. The next promising node is selected

even if there is no progress. In order to prevent loops, nodes

should be visited no more than one time. This can be done

simply by adding the destination address of the packet in a

special “no-path” list on each visited node. This procedure

prevents loops and averts using this path again for the same

destination that cannot be reached through this node. This

list must be kept alive for some period of time. Another

possible solution is to construct alternative paths to the m
adjacent and physical neighbors on each node.

4 Performance Evaluation

For a first analysis of the VCP protocol, we implemented

a simulation model of the protocol in OMNeT++ [22]. OM-

NeT++ is a discrete event based simulator free for academic

use. In addition, there are some extensions such as the INET

and the MF framework available released under GNU Gen-

eral Public License (GPL). In this section, we show pre-

liminary simulation results. The results have been collected

from several simulation experiments to investigate the im-

pact of different parameters like network size and traffic

load on the performance of our protocol.

4.1 Simulation Environment

We used the INET framework that provides detailed sim-

ulation models of the MAC and the physical layer. In

our simulation, we built our protocol on the top of the

IEEE 802.11 Wireless LAN protocol. For the first set of

experiments, the nodes are deployed either in a grid or ran-

domly on a rectangular area. Each node can communicate

only to direct neighbors that are aligned either horizontally

or vertically but not on the diagonal. An example of a 25

node network is depicted in Figure 3. The figure includes

the virtual relative positions and the virtual cord connecting

all the nodes. We varied the network size from 25 to 225

hosts and adapted the plane size to keep the density con-

stant. Moreover, we studied two different traffic patterns.

After joining the network, each node uniformly selects a

start time in the time interval [0, 100) s. Then, in the first
traffic scenario, we evaluated bursty traffic, i.e. all messages

were sent with a uniformly distributed inter departure time

in [0, 1) s. Secondly, a constant packet stream was analyzed
to compare the protocol behavior under artificial traffic con-

ditions. For statistical correctness, each experiment was ex-

ecuted five times for different data item keys.

Figure 3. Simulation setup. Nodes are de-
ployed either in a grid or randomly a rectan-

gular area

For all communications, the complete network stack is

simulated and wireless modules are configured to closely

resemble IEEE 802.11b network cards transmitting at

2Mbit/s with RTS/CTS disabled. For the simulation of
radio wave propagation, a plain free-space model is em-

ployed, with the transmission ranges of all nodes adjusted

to a fixed value of 50m.All simulation parameters used to
parameterize the modules of the INET Framework are sum-

marized in Table 1.

4.2 Quality of routing paths

In order to inspect the quality of the routing paths, we

examined the stretch ratio, i.e. the ratio between length of

the path traversed by VCP and the shortest path. For dif-

ferent network sizes, we measured the path length from all

nodes to the upper left node.

Before showing the simulation results for different net-

work sizes, we analytically evaluate the average path length.

The average length of routing paths lavg depends on the

number of nodes n in the network. For simplified anal-
ysis, we still consider only nodes deployed in a grid net-

work in a rectangular area. The maximum length of rout-

ing paths lmax in the grid occurs when routing between end
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Table 1. INET Framework Module Parameters
Parameter Value

mac.address auto

mac.bitrate 2Mbit/s
mac.broadcastBackoff 31 slots
mac.maxQueueSize 14Pckts

mac.rtsCts false

decider.bitrate 2Mbit/s
decider.snirThreshold 4 dB

snrEval.bitrate 2Mbit/s
snrEval.headerLength 192bit

snrEval.snrThresholdLevel 3 dB
snrEval.thermalNoise −110dB
snrEval.sensitivity −85dB

snrEval.pathLossAlpha 2.5
snrEval.carrierFrequency 2.4GHz
snrEval.transmitterPower 1mW

channelcontrol.carrierFrequency 2.4GHz
channelcontrol.pMax 2mW
channelcontrol.sat −85dBm

channelcontrol.alpha 2.5

corners. To find a mathematical solution we inspect simple

networks. For a network with only one node, lmax is 0, for

four nodes it is 2, for nine nodes it is 4, and so on. Thus,

lmax can be calculated recursively as shown in Equation 1.

The close form solution is given in Equation 2.

lmax(1) = 0

lmax(n) = lmax(
√

n− 1) + 2 (1)

lmax = 2
√

n− 2 (2)

Of course the minimum number of hops lmin equals to

0, which means the node sends to itself. Because the grid

is symmetrical, which means the number of nodes that have

lmax is the same as the number of nodes that have lmin and

the number of nodes that have lmax − 1 is the same as the
number of nodes that have lmin+1, and so forth, the average
length of routing paths lavg can be calculated as:

lavg =
lmax + lmin

2

=
√

n− 1 (3)

Thus, in case of 25 nodes, the average path length lavg =
4 and the maximum path length lmax = 8 (between end
corners).

Figure 4 shows the measured stretch ratio in the simula-

tions as we varied the network size from 25 to 225 nodes

as stated before. The stretch ratio increases with the net-

work size, however, this increase is reasonable and it stays

below 25%. This low stretch level outlines the optimal

path selection of VCP. For comparison, the stretch ratio of

VRR [4] increased above 40% for network sizes larger than

200 nodes. This is because successors and predecessors,

which are included in the routing table, can be far away

from each other and, therefore, messages may visit many

unnecessary nodes. This indicates that in VCP messages

are traveling near optimal paths.

4.3 Influence of the network size

We performed a series of experiments to explore the ef-

fect of network size on the performance of VCP. Each node

in the network sends packets to the same destination, which

is equivalent to store the same data item collected from all

the sensor nodes in the network. We varied the network size

from 25 to 225 nodes.

Figure 5(a) shows the averaged results of the five runs

for each size. It is clear the path length increases with the

network size in a logarithmic manner. However, there are

few nodes that used a path length larger than the shortest

path to reach the destination. Taking a look on the average

and mean path lengths, they are almost near around half of

the worst case shortest path lmax, which is an indication of

good path selection. Also more than 75% of the nodes have

a path length smaller than lmax. On the other hand, the end-

to-end delay is proportional to the path length as a result of

only propagation delay because it is not necessary to queue

packets. Moreover, the success ratio was 100 percent for all

large network sizes.
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Figure 5. First performance evaluation results. Most figures are drawn as boxplots indicating the
mean value and the quartiles. The small box shows the average value

4.4 Influence of the traffic load

To study the behavior of our protocol under varying traf-

fic load, we kept the number of nodes in the network con-

stant at 100 nodes and each node in the network sends

100 packets to the same destination. For the first experi-

ments, the time between successive packets was randomly

selected in the interval [0, 0.5] seconds, which is equivalent
to sending at least 2 packets per second. Afterwards, we de-

creased this time interval down to [0, 0.005] seconds, which
is equivalent to sending at least 400 packets per second. As

shown in Figure 5(b) packets can be delayed at the MAC

layer due to congestion. As a result the end-to-end delay

is increased with increasing traffic load. Nevertheless, the

delay is still in an acceptable range. For sending packets

with rate below 16 packets per second, the effect of con-

gestion is negligible. However, the delay reached a peak

of 1.2 s when sending with rate of 400 packets per second
compared to only 0.03 s in the other case. The effect of in-
creasing traffic was not so big on the packet delivery rate.

As can be seen from Figure 5(b), the loss ratio was below

0.4%, therefore the success rate is still above 99.6%.

We repeated the same experiment using a constant

packet rate. Thus, we started sending packets every 0.5 s
and decreased this duration down to 0.005 s. As shown in
Figure 5(c), the results are a little bit better. There was no

impact of increasing traffic load until 32 packets per second

and the mean delay was lower than before. However, the

peak delay was slightly higher than sending packets within

a random interval.

To explore the performance of VCP in random deploy-

ment, we performed several simulations using a network

consisting of 200 nodes deployed randomly in a 600× 120
plane, which is similar to scenarios described in [4] for

VRR. The packet rate was set to one or two packets per

second, which is equivalent to 200 or 400 CBR flows, re-

spectively. In less than 20 s, all the nodes joined the net-
work. The average number of control messages sent by each

node (excluding hello messages) was 10.54. Each node start

sending a 100 byte packet to a random destination at a ran-

dom time in the interval 50 to 230 seconds. All nodes stop

transmission at time 950 s. As shown in Table 2, the re-
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sults are very promising. For example, the success rate is

almost 100% – even for high traffic load. In comparison,
the success rate for VRR dropped to 60% if either the net-
work size increased to more than 200 nodes or if the traffic

load doubled.

Table 2. Influence of the traffic load for ran-

dom deployment

Measure 1 packet/s 2 packets/s

success rate 100% 99.95%

average delay 0.0068 s 0.0174 s

max delay 0.065 s 0.234 s

average hop count 5.65 5.79

max hop count 16 16

4.5 Comparison to standard ad hoc rout-
ing techniques

In order to provide a better understanding of the perfor-

mance of VCP, we finally compared VCP to standard ad

hoc routing techniques. This comparison outlines the us-

ability of VCP especially in typical WSN scenarios where

nodes are less mobile compared to MANETs.

Most recent proposals for routing protocols in both the

WSN and the MANET domain have been evaluated in com-

parison with Ad Hoc on Demand Distance Vector (AODV).

We decided to explicitly use DYMO for this comparison as

it is the designated successor for AODV.

4.5.1 Scenario description

DYMO is the most recent reactive (on-demand) routing

protocol, which is currently developed in the scope of the

MANET working group of the Internet Engineering Task

Force (IETF) [5]. DYMO builds upon experience with pre-

vious approaches to reactive routing, especially with the

routing protocol AODV [13]. It aims at a somewhat sim-

pler design, helping to lower the nodes’ system require-

ments and simplify the protocol’s implementation. DYMO

retains proven mechanisms of previously explored routing

protocols like the use of sequence numbers to enforce loop

freedom. At the same time, DYMO provides enhanced fea-

tures, such as covering possible MANET-Internet gateway-

ing scenarios and implementing path accumulation.

For this second set of experiments, we followed the ex-

periments described for some recent DYMO studies [19].

We evaluated the performance for the following combina-

tions of scenarios:

1. Nodes were arranged either to form a grid or in a com-

pletely randommanner.

2. The playground size was adjusted so that the average

distance between neighboring nodes corresponded to

either one hop or three hops (according to the grid sce-

nario).

3. The packet sink was either globally well identified, i.e.

node 0, or randomly selected.

4. Nodes sent a new packet either following an exponen-

tial distribution with a mean value of one second or

a mean value of ten seconds, or following a random,

bursty pattern.

Primarily, we analyzed two parameters, the collision rate

on the MAC layer as a measure for the congestion in the

wireless network and the end-to-end delay as experienced

from an application’s perspective as a measure for the pro-

tocol efficiency. In all experiments, we placed 100 nodes

in a rectangular area either on a grid or randomly. Also,

we varied the node density and the traffic rate as described

above.

4.5.2 Collisions on MAC layer

In order to make sure that none of the effects discussed in

later sections occurred due to message loss resulting from

collisions in the overloaded shared medium, the first mea-

sures that we evaluated were the number of collisions and

the number of successfully received transmissions, as ob-

served by the MAC layer.

Figures 6(a) and 6(b) show the ratio of MAC collisions

per link-layer packet sent for nodes deployed in a grid or

randomly for DYMO and VCP, respectively. As can be

seen, only in the case of high node density and a mean in-

terval between two application-layer messages of 10 s, the
collision ratio in the DYMO experiments exceeds 40%.
MAC collisions for other scenarios were much more sel-

dom, reaching only insignificant ratios. VCP keeps the col-

lision ratio in almost all experiments close to 0%. In the
case of grid deployment and one message every 10 s, the
collision ratio for VCP exceeds 5 %. This is not an effect
of collisions among data messages but among the periodic

hello messages. With decreasing data rates, the percentage

of hellos to normal data messages increases and only effects

(collisions) of hellos can be measured.

4.5.3 End-to-end delay

For the applications, one of the most important measures is

the delay of messages from generation until storage to the

destination node. Figures 6(c) and 6(d) show the results of
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(a) Number of collisions for DYMO:

grid deployment (top) vs. random de-

ployment (bottom)
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(b) Number of collisions for VCP:

grid deployment (top) vs. random de-

ployment (bottom)
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(c) Data delay per hop for DYMO:

grid deployment (top) vs. random de-

ployment (bottom)
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(d) Data delay per hop for VCP: grid

deployment (top) vs. random deploy-

ment (bottom)

Figure 6. Simulation results for the comparison between VCP and DYMOs. Again, the figures are

drawn as boxplots indicating the mean value and the quartiles. The small box shows the average

value

our simulation experiments. In order to produce compara-

ble results, both figures depict the mean delay per hop, i.e.

the end-to-end latency divided by the number of hops for

this particular transmission.

Without looking at particular numbers, which mainly de-

pend on the specific network scenario, we need to discuss a

number of effects that became visible in these figures. Con-

sidering the DYMO measurements first and comparing the

traffic scenarios with one and ten seconds inter-packet time,

we see that the average per-hop delay increases. This effect

can be explained by the route timeouts used by DYMO in

our experiment. In the ten seconds example, DYMO has to

set up a route for almost each packet because the available

routes have timed out. Thus, each time an additional route

setup delay adds to the packet transmission delay. Thanks

to the route response messages created on behalf of the des-

tination, the median is equal in both cases.

Looking at the VCP measurements, we see that the mea-

sured per hop delay varies much less compared to DYMO.

The first reason is the consequent application of the virtual

cord to locate destination nodes and to forward packets to-

wards this destination. Furthermore, and this is confirmed

by the per hop delay that is a bit smaller compared to the

DYMO scenario, VCP is able to rely on better path infor-

mation. The network stretch analyzed in Section 4.2 also

supports this observation.

5 Conclusion

VCP is a new DHT-like protocol that is based on vir-

tual relative positions for routing. It offers traditional DHT

services as well as efficient packet routing. VCP has the

following attractive characteristics:

• The successors and predecessors are in the vicinity,
which reduces the communication load when nodes

join and leave the network.

• The exact physical location is not required, instead we
use an easy to be obtained relative position.

• VCP is scalable because it needs only information
about direct neighbors for routing.

• There is no problem with dead-ends because the cord
structure always ensures reachability of the destina-

tion. Additionally, greedy forwarding helps to find

good paths.

• It is easy to be implemented using typical MAC proto-
cols.

141



In this paper, we studied the performance of VCP for dif-

ferent scenarios. We showed that the path length is almost

optimal and greedy forwarding guarantees packet delivery.

Additionally, there is no extra delay needed before packet

forwarding. Therefore, VCP represents a promising tech-

nique, however more investigation is needed to explore the

performance of the protocol in different environments.

Future work on VCP includes further research on han-

dling of node failures and rejoining partitioned networks.

Additionally, we are working on an implementation VCP

on sensor nodes in our lab environment.
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