
 

  
Abstract—Localization is one of the most challenging and im-

portant issues in wireless sensor networks (WSNs), especially if 
cost-effective approaches are demanded. In this paper, we present 
intensively discuss and analyze approaches relying on the re-
ceived signal strength indicator (RSSI). The advantage of employ-
ing the RSSI values is that no extra hardware (e.g. ultrasonic or 
infra-red) is needed for network-centric localization. We studied 
different factors that affect the measured RSSI values. Finally, we 
evaluate two methods to estimate the distance; the first approach 
is based on statistical methods. For the second one, we use an 
artificial neural network to estimate the distance. 
 

Index Terms—Wireless sensor network, distance measurement, 
network-centric localization, RSSI 

I. INTRODUCTION 
CCORDING to Moore's law, each year electronic devices 
become cheaper and smaller. Connecting huge numbers 

of small embedded systems, one is able to create powerful 
massively distributed systems. The best-known examples are 
wireless sensor networks (WSNs). Such sensor networks con-
sist of a number of sensor nodes, possibly reaching hundreds 
or thousands of connected devices. Each node is a small com-
puting device, which has the capability of sensing and compu-
ting in addition to the ability to communicate with other nodes. 
Wireless Sensor networks represent one of the emerging re-
search domains. There are many applications for WSNs in 
military domains but also in civil applications such as habitat 
monitoring and emergency applications. 

In this paper, we study and discuss short ranged RSSI based 
distance measurement and localization methods and possible 
improvements for a mobile robot. We introduce two methods 
for distance estimation based on the RSSI value; the first ap-
proach is a statistical method and the other one is based on a 
trained feed forward artificial neural network. For experimen-
tal tests, we developed a prototype using BTnode sensor 
nodes1 and the mobile robot system Robertino.2 One single 
BTnode is connected on top of the robot acting as a base sta-
tion of the WSN. This has the main advantage that we can ro-
tate and move the base station as well as changing the RF pa-
rameters during our measurements. Thus, we can investigate 
 

1  http://btnode.ethz.ch/ 
2  http://www.openrobertino.org/ 

the influence of antenna orientation, signal strength, and local 
disturbances on the distance estimation in more detail as if we 
would use a static base station. Additionally, the robot is sup-
plied with a database of fine-grained RSSI/distance pairs that 
have been gathered by performing many calibration runs. 

II. RELATED WORK 
In the last few years, several approaches have been pre-

sented for indoor localization as well as for outdoor use. May-
be the most famous localization method is to measure the time 
of flight (ToF) of radio frequency (RF) signals, which is for 
example used in GPS systems. Usually, this method cannot be 
applied in WSN due to the short distance and the much too 
inaccurate time synchronization of the sensor nodes. Cricket 
motes exploit this fact and send RF and ultrasonic signals as-
suming the RF signal has no delay and measure the ToF for the 
ultrasonic signal [9]. RADAR is a user tracking system [2]. It 
uses empirical as well as mathematical models to determine 
the signal strength. Calamari uses RSSI and acoustic ToF to 
estimate the distance [11]. It uses an audible frequency to re-
duce the complexity of the system. SpotON is a RSSI based ad 
hoc localization system for WSNs [4]. It can be used for rela-
tive and absolute position determination. In this system, all the 
nodes need to be calibrated before being used. MoteTrack 
focuses on  a robust, decentralized implementation [7] as the 
most localization systems need a base station for data 
processing. The majority of the nodes take over only a limited 
role in the localization process to support the case that one or 
more base stations are down. Additionally, the localization of 
mobile systems has been addressed [5, 10]. 

III. CONSIDERATIONS ON RSSI BASED DISTANCE ESTIMATION 
All signal strength-based localization systems, in particular 

indoor, must consider errors in the measured values, which 
result from multi-path propagation, reflection, and fading ef-
fects. At the execution time of the first measurements, there is 
limited relation between the RSSI value and the real distance. 
In addition, there is a set of influencing factors, which can be 
controlled and exploited for improved measurement results. 

A. Antenna characteristics and orientation 
The used antennas are regarded to forming sources with 
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spherical radiation. Typically, signals are sent in the frequency 
range between 868 MHz and 915 MHz, thus, the antennas are 
about 8.3 cm (λ/4) long. Usually, it is assumed that the signals 
on their way from the transmitter to the receiver spread in all 
directions equally – otherwise, measurements of the mutual 
orientation would have to be admitted. Since we cannot deter-
mine mutual orientation but we do assume the fact that the 
orientation directly exerts influence on the RSSI, a method is 
needed to compensate the orientation effects. 

B. Variation of the transmission power 
The transmission power and the frequency determine the 

maximum range of the radio waves. While the maximum 
transmission power might be appropriate for long distance 
communication (disregarding energy requirements), differenc-
es in the RSSI are hardly visible for small distances between 
transmitters and receivers. However, the measurement of short 
distances for the localization in closed areas with small dimen-
sions is important. Thus, the transmission power must be well-
controlled for meaningful RSSI based distance measurements. 

C. Variation of the Frequency 
Small changes of the wavelength can lead to different de-

velopments of the fading effects caused by reflection. Thus, 
the dispersions caused by inappropriate frequency under the 
given basic conditions must be considered. Therefore, also the 
observation of the signal strength under different frequencies is 
a subject of the accomplished experiments. 

D. Experimental Setup 
Our lab is an area of 5x8m with desks, workstation comput-

ers and shelves (see Fig 1). In the middle there is a free area of 
about 3.5 x 5.0m. Our experiments take place here, since our 
main focus is to examine short range RSSI deviations under 
standard conditions for indoor localization (keeping the overall 
applicability in mind). 

 

 
Fig 1. In the lab environment, a great number of objects may influence 

the radio transmission 

In our lab, we are using BTnode sensor nodes, which em-
ploy a Bluetooth interface and a 433-915MHz low power radio 
chip CC1000. The nodes are equipped with an Atmel ATme-
ga128L microcontroller running at 8MHz and 128Kbyte flash 
memory. For our measurements, we also used the mobile robot 
system Robertino. This robot carries a PC104 board running 
Linux. It is able to perform all the localization algorithms de-

scribed in this paper. For communication with the sensor net-
work, we attached a BTnode to the top of the Robertino. 

IV. DISTANCE MEASUREMENTS 

A. Statistical Aspects 
First, we examined the characteristics of the RSSI. For the 

Chipcon CC1000, the RSSI is recorded with an analogue sig-
nal (0–1.2V) that is inversely proportional to the input signal 
level. Using a frequency of 868MHz, the readings from the 
AD converter can be converted to dBm: 

VRSSI[V] = ADC x 2.56V / 1024 
P[dBm] = -50.0 x VRSSI – 45.5dBm 
We used the robot to request some data packets with arbi-

trary distance and saved the respective RSSI values. In this 
experiment, the distance between the robot and the sensor 
node was 2.2m. First, the RSSI values were observed for a 
time period of 120s. 

Histogram of Received RSSI Values  in duration of 120s

RSSI

N
um

be
r o

f P
ac

ke
ts

10 15 20 25 30 35 40

0
20

40
60

80
10

0

62

8 6
0

110

0

76

41

112

0
4

0 1

 
Fig 2. Variation of the RSSI values over 120s 

In Fig 2, it is to be recognized that the measured values vary 
strongly under identical conditions. It is noticeable that from 
the range of RSSI values between 15 and 45 actually only 9 
different values were measured. It is to be therefore assumed 
that the resolution of the RSSI does not cover the complete 
range of values. A further problem is that in two minutes only 
very few packets are sent. The bottle neck is the packet 
processing in the sensor node. 

In another experiments it showed up that a transmitter can 
send between 170 and 180 packets in 30 seconds. The packet 
size (maximum 255 byte + 7 byte header) does not influence 
the speed. Therefore, it must be examined whether the evalua-
tion of fewer RSSI values is statistically relevant. In a second 
attempt under identical conditions, we measures RSSI values 
over 20s (see Fig 3). 

The comparison of both histograms shows differences in the 
distribution of the RSSI values. Nevertheless, the statistical 
properties need to be considered. A comparison of the statis-
tical data shows that both measurements exhibit similar cha-
racteristics as depicted in Table I. For the localization system 



 

it is crucial that a small number of measurements supplies re-
levant results, since we need data from many different nodes. 

Histogram of Received RSSI Values  in duration of 20s
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Fig 3. Variation of the RSSI values over 20s 

Table I. STATISTICAL CHARACTERISTICS OF RSSI MEASURES 

 RSSI (120s) RSSI (20s) 
Minimum 15 14 
25%Quantile 24 21.75 
Median 28 28 
Mean  25.75 24.75 
75%Quantile 31 30 
Maximum 39 31 
Standard div. 5.60 6.18 

B. Distance dependency  
In the next experiments, we examined how the RSSI values 

change with different distances. The past results suggest that 
small number packets can supply meaningful results. There-
fore, in each experiment we used 60 packets to determine the 
RSSI values for distances of 1m and 3m. This range was se-
lected to judge the relevance of indoors locations. The mea-
surement environment was a hall in our sports center. A small-
er range of the RSSI values is to be expected according to 
fewer reflection surfaces compared to our lab. 

The expected decrease of the range of values did not appear 
in the changed environment (see Fig 4 and Fig 5). We assume 
that the quality of the used antennas caused this strong disper-
sion. One recognizes besides that the distance difference of 2m 
has little influence on the measured RSSI values. A compari-
son of the statistic data of both series of measurements con-
firms this impression. With 3m, a tendency is recognizable 
toward the higher RSSI values. However, this change is so 
small that inverse mapping of the RSSI on the distance would 
be connected with a large error. 

C. Adjustment of the transmission power 
Without modification, BTnode transceivers use a frequency 

of 868 MHz and a maximum power of 5 dBm. With a low 
quality antenna, they have an effective transmission range of  

RSSI values for a distance of 1 m
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Fig 4. RSSI measurement for 1m 

RSSI values for a distance of 3 m
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Fig 5. RSSI measurement for 3m 

about 20m. For indoor localization, the transmission power 
should be adapted to cover the complete RSSI, so that one can 
expect sharp demarcations also between small distances. If the 
transmission power is regulated to the lowest value (-20 dBm), 
then the effective range lies below 1m, which is too small for 
distance measurement purposes. In an experiment, we com-
pared a medium transmission power (-4 dBm) to the full 
transmission power as used before. Again, we measured dis-
tances of 1m and 3m. 

From Fig 6 and Fig 7, it could be recognized that there is a 
clear shift of the range of values toward the higher RSSI. Es-
pecially for the 3m experiment, the desired effect occurred. 
The statistics show clear changes in the recorded values. 

However, we will describe later that a simple interpolation 
between two reference values is not sufficient to reach an ade-
quate illustration of the RSSI on the distance. 

D. Adjustment of the frequency 
In the next attempt, two different frequencies of 863.5MHz 

(λ 0.3474m) and 869.9MHz (λ 0.3449m) are compared regard- 



 

RSSI values for a distance of 1 m, transmission power=-4dBm
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Fig 6. RSSI measurement for 1m, transmission power -4 dBm 

RSSI values for a distance of 3 m, transmission power=-4dBm
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Fig 7. RSSI measurement for 3m, transmission power -4 dBm 

ing the quality of distance approximations. In this experiment, 
a number of measurements were done automatically by the 
robot. It drove over a distance of 5m in steps of 50cm toward a 
sensor node. In each step, it requested 60 packets on the two 
frequencies and stored the RSSI values. The results are de-
picted in Fig 8 and Fig 9. 

During this experiment, a high standard deviation is recog-
nizable in the range between 2.0 and 3.0m for the lower fre-
quency. Thus, the median is less meaningful regarding the 
distance, even if it rises almost straight-lined over a wide range 
with increasing distance. The minimum represents a much bet-
ter distance indicator. 

The RSSI values of the higher frequency exhibit a smaller 
difference between maximum and minimum for each individu-
al step. The standard deviation of this series of measurements 
is small for all distances. With exception of the first and last 
hops minimum and median ascend with increasing the dis-
tance. Two further series of measurements, which were ac-
complished with higher transmission power however under the 
same conditions, exhibited a very similar pattern regarding the 

standard deviation. It is clear that the higher the standard devi-
ation the more uncertainty during the distance estimation. 
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Fig 8. RSSI values measured at 863.5MHz 
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Fig 9. RSSI values measured at 869.9MHz 
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Fig 10. RSSI values measured during rotation 

E. Change of Orientation 
In the past experiments, the orientation of the robot and thus 

the alignment of the receiver node relative to the transmission 



 

node was always the same. Since a localization procedure 
needs data from many sensor nodes, which may stand in arbi-
trary alignment to the robot, we needed to examine whether the 
change in the orientation of the sensor node changes the RSSI 
values. It turned out that the standard deviation increased in 
the case of rotation. During each measurement, the robot ro-
tated 180° to the left then 360° to the right; finally it goes back 
on the starting position. This rotation finally leads to a substan-
tial advantage (Fig 10): using again the minimum of the RSSI 
measures, it is possible to overcome orientation effects – while 
the standard deviation of the measured values obviously in-
creased. Thus, the experiment shows that a measurement with-
out consideration of the orientation would be incomplete. 

F. Smoothness of RSSI measurements 
A further important aspect is the resolution of the RSSI. In 

order to evaluate the quality of the RSSI to distance mappings, 
measurements must be done in much smaller steps. In the fol-
lowing experiment, the distance increment of the robot is re-
duced to 10cm per step resulting in altogether 50 measure-
ments, each one for 60 packets. Additionally, the robot rotated 
with each measurement around its axis. 

The results as depicted in Fig 11 show that it needs about 
0.5m to see somewhat higher RSSI values. In all measurement 
groups, a strong increase of the standard deviation and the 
maximum RSSI can be observed. These values should not be 
considered for the compensation calculation. 
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Fig 11. RSSI measures using 10cm step size 

In the ranges between 0.5m and 1.0m as well as between 
3.5m and 5.0m, the RSSI hardly contains information about 
the distance. The measured value stagnates or oscillates with-
out a tendency. However, between 1.0m and 3.5m, the meas-
ured values seem to be meaningful. 

V. DISTANCE APPROXIMATION 
In order to approximate the distance between two nodes, we 

compared two methods as discussed in the following. 

A. Linear and exponential regression 
The method for distance estimation is based on the compari-

son of the characteristics of descriptive data, e.g. the average, 

median, and quantiles. The average value appears however as 
less suitable, since only small packet quantities are regarded 
and, thus, arising peaks could distort the result. Therefore, we 
used only the minimum, the median, and the 25% quantile. 

If we want to describe the measured RSSI values functional-
ly, we need an illustration, which represents as exactly as poss-
ible the distances for measured RSSI values. For this function 
the statistic data of the RSSI form the input and the associated 
distance the output. In our experiments, we recognized that the 
data can be best described by a linear or exponential function 
as shown in Fig 12. 
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Fig 12. Linear and exponential regression based on the median of the 

measured RSSI values 

B. Estimation using artificial neural networks (ANNs) 
ANNs are biologically inspired classification algorithms. 

They try to simulate the human brain. Our brain consists of 
about 10 billion neurons; each neuron connected to about 
10,000 other neurons through dendrites (inputs) and axons 
(output). At each neuron, the inputs are to be summed, if the 
summation of the inputs is greater than a threshold, then the 
neuron fires, and an output signal to the next neuron is gener-
ated. The inputs have different effects on the outputs depend-
ing on the synapse so some inputs have excitatory effects and 
others have inhibitory effects. The strengths of the inputs is 
determined by the weights in ANN. Feed forward artificial 
neural networks perform signal processing without possible 
feedback, thus, the signals flow from the inputs to the outputs 
of the network through several layers of neurons. 

 
Fig 13. A single processing element in ANNs 

The neuron is the basic processing element; the output of 
the neuron is a function of the inputs as shown in Fig 13. Wi is 
the weight, and b is a bias, which is corresponding to the thre-



 

shold in the biological neural network. F() is called activation 
function. 

The weights are to be determined in the learning process. 
This learning is either supervised or unsupervised. Samples 
with inputs and outputs are needed in the supervised leaning, 
while in the unsupervised are only the inputs needed. In this 
paper, we used supervised learning to train the network to es-
timate the distance based on the RSSI values, so the inputs are 
RSSI values and the output will be the estimated distance. 
Back propagation is the common used learning method in feed 
forward neural network. The error is to be back propagated to 
adjust the weights to reduce the error between the actual out-
put and the estimated output. 

Our neural network is implemented using MATLAB. We 
used an ANN with 60 inputs and one hidden layer with 20 
neurons and one output. The sigmoid function is employed as 
activation function for hidden layer and liner activation func-
tion for output layer. The weights and biases are optimized 
using the Levenberg Marquardt optimization method. 

VI. RSSI BASED LOCALIZATION 
In this section, we show the applicability of the RSSI based 

distance measurement for localization. The basic localization 
method as used in our experiments is multilateration. Due to 
the limited space, we only describe the basics of trilateration, 
i.e. multilateration based on three measurements. Afterwards, a 
number of experimental results are provided. 

A. Trilateration 
If we need to estimate the location of a node based on   

known node, the position of this node is computed by the solu-
tion of a set of equations. The most common localization algo-
rithm is the Trilateration as depicted in Fig 1. 

If the distances are known to at least three reference objects, 
one can set up a system of circle equations. Given the posi-
tions of three known anchor nodes Mi=(xi,yi), the following 
equation system must be solved to get the search position 
P=(ux,uy): 

(ux - x1)2 + (uy - y1)2  =  r1
2 

(ux - x2)2 + (uy - y2)2  =  r2
2 

(ux - x3)2 + (uy - y3)2  =  r3
2 

 

 
Fig 1. Trilateration in R2 

B. Experimental results 
In our experiments, seven nodes (BTnode2 … BTnode9) 

are placed on the ground of our lab. We analyze the results of 
the localization system for six different positions (A … F). We 
tuned the system parameters to the values we tested in the past 
experiments. The robot requests 60 packets from each node. 
This setup is depicted in Fig 2. 
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Fig 2. Experimental setup for localization including anchor nodes 

(BTnode2 … BTnode9) and searched positions (A … F) 

1) Typical results 
Table II contains a comparison between actual and esti-

mated distances for position A for all considered regression 
curves. In particular, we evaluated linear and exponential re-
gression using the minimum, the median, and the 20% quantile 
of the measured RSSI values. The table shows the real and the 
estimated distance to all sensor nodes. Additionally, the aver-
age estimation error is included in the table (last line). It is 
clear from this table that median based with linear regression 
has the smallest error compared to the other statistics and re-
gression methods. 

Table II. MEASUREMENT RESULTS FOR POSITION A 

A Dist. Distance estimations with regression
Node D(m) Min., 

Lin. 
Min. 
Exp. 

Med. 
Lin. 

Med. 
Exp. 

Qua. 
Lin. 

Qua. 
Exp. 

2 1.38 1.38 1.21 1.34 1.46 1.61 1.34
3 3.47 1.82 1.48 2.25 1.80 2.20 1.77
4 2.65 1.66 1.38 1.77 1.43 1.62 1.34 
6 4.14 2.64 2.18 2.99 2.57 2.72 2.26
7 1.38 1.38 1.21 1.09 1.03 1.34 1.17
8 3.47 3.54 3.32 3.68 3.59 3.58 3.40 
9 2.65 1.66 1.37 1.64 1.34 1.48 1.26 
∑∆d/n 0 0.74 0.99 0.69 0.90 0.75 0.94

 
After training the artificial neural network using the data of 

some calibration measures, the ANN was used to estimate the 
distances to the anchor nodes similar to the regression tech-
niques. The estimated distances for node A are shown in Table 
III. Obviously, the estimation error of the ANN is comparable 
to the statistical methods. 



 

Table III. DISTANCE MEASUREMENT FOR POSITION A USING THE ANN 

A Dist. Distance 
estimation 

Node D(m) ANN. 
2 1.38 2.06 
3 3.47 3.71 
4 2.65 1.88 
6 4.14 3.28 
7 1.38 0.42 
8 3.47 3.42 
9 2.65 2.06 
∑∆d/n 0 0.60 

 
We finally used the multilateration technique to estimate the 

location of the particular node in the environment. We tested 
the impact of the number of anchor nodes for the quality of the 
position approximation by using between four and seven anc-
hor nodes for the multilateration process.  

Fig 3 shows the location information for position A using 4, 
5, 6, or 7 anchor nodes, respectively. As can be seen, the loca-
lization quality is quite high. Actually, position A represents a 
typical example for the position quality. In the following, the 
best and worst cases are described. 
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Fig 3. Position estimation for position A 

2) Worst case: position B 
The position computation for position B is based on a max-

imum of six instead of seven distance estimations. The locali-
zation process is completely automated and it may occur that 
any node is unavailable for the distance measurement process. 
We did not correct this consciously, since in the reality the 
occurrence of node failure is not rare. Table IV shows the dis-
tance estimation and Fig 4 depicts the corresponding average 
localization. Obviously, the quality of the distance measure-
ment is comparably bad in this example. The average distance 
estimation error is about 0.8m resulting in high localization 
errors. Interestingly, the distance estimation using the ANN 
approach is much better in this example. Nevertheless, in aver-
age, both methods produce estimations with the same quality 
and error range. 

Table IV. DISTANCE MEASUREMENT FOR POSITION B (WORST CASE) 

B Dist. Distance estimation 
Node D(m) Med. Lin. ANN  
2 2.65 2.91 2.43 
3 4.14 3.03 2.44 
4 1.38 0.92 1.05 
6 3.47 3.10 3.86 
7 - -  
8 3.47 2.94 3.45 
9 1.38 2.41 1.58 
∑∆d/n 0 0.80 0.48 
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Fig 4. Position estimation for position B 

3) Best case: Position D 
Position D supplies the best results despite high dispersion 

over the averaged coordinates of all calculated positions. Ta-
ble V shows the results for the distance estimations for posi-
tion D. In this case, the regression method provides distance 
estimations with an average error of less than 0.5m. This result 
is quite encouraging compared to measures that can be found 
in the literature. In this specific case, the ANN was not able to 
produce high quality estimations as the average estimation 
error was about 1m. We need to further study possible combi-
nations of the statistical regression methods with “fuzzy” ap-
proaches such as the ANN. 

Finally, Fig 5 depicts the localization quality for the best 
case measurement, position D. Obviously, all the estimations 
perfectly approximated the right position. 

Table V. DISTANCE MEASUREMENT FOR POSITION D (BEST CASE) 

D Dist. Distance estimation 
Node D(m) Med. Lin.  ANN  
2 3.47 4.15 5.0 
3 1.38 1.04 0.51 
4 4.14 3.15 3.55 
6 2.65 1.48 0.71 
7 3.47 3.16 3.44 
8 1.38 1.14 1.73 
9 2.65 2.67 4.31 
∑∆d 0 0.54 0.99 
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Fig 5. Position estimation for position D 

VII. CONCLUSION 
In conclusion, it can be said that a huge number of parame-

ters must be considered for high quality distance estimation 
and, therefore, localization in wireless sensor networks using 
the received signal strength indicator. In particular, we identi-
fied the following parameters, which affected the distance 
measurement to a certain degree: 
• The used transmission power 
• The radio frequency 
• The node orientation, i.e. antenna characteristics 
• The localization algorithm 
• The quality of the reference measurements 
 
Based on these findings, we developed an adaptive testbed 

for distance measurements and localization experiments. In our 
opinion the most important factor for proper distance estima-
tion is to choose a transmission power according to the rele-
vant distances. If the power is too high the RSSI differences 
between different distances are not significant enough for a 
good interpretation – if it is chosen too small far-field effects 
take place for short distances already leading to calibration 
data containing only little distance information.  

It is also important to take care of the chosen frequency for 
the localization setup. Our experiments have shown that some 
frequencies are more vulnerable to disturbances than others. 
But it can be assumed that this observation is individual for 
different orientations and positions of the robot in the test se-
tup. Therefore it is desirable to compare the measurements of 
different frequencies not only prior but also during the locali-
zation to get the best possible results. 

Depending on the quality of the antennas a RSSI based loca-
lization system must also take the bi-directional orientation of 
sensor-nodes into account. 

On the other hand we made the experience that the localiza-
tion algorithm itself and the preparation and interpretation of 
calibration data does not take much influence on the quality of 
position estimation. In additional experiments we also aver-

aged the position results over all possible combinations of dis-
tance information (similar to GPS) which did not improve the 
results significantly.  

The (well-known) major problem is that RSSI values do not 
necessarily contain any distance information.  However we 
showed that even for noisy indoor environments an average 
positioning error of 50cm on an area of 3.5 x 4.5 m is possible 
by choosing the RF and algorithm parameters carefully based 
on empirical studies. 
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