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ABSTRACT
Channel state information (CSI) is widely used for joint com-

munication and sensing in sub-6GHz wireless networks,

but its application at mmWave frequencies remains under-

explored. This work applies a quantized amplitude-based

CSI similarity metric to data from a 28GHz indoor testbed,

showing the feasibility of CSI-based ambient sensing in next-

generation wireless networks.
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1 INTRODUCTION
Joint communication and sensing (JCAS) is emerging as a

foundational technique for next-generation Wi-Fi and up-

coming beyond-5G cellular networks. The possibility of ac-

quiring information about the surrounding environment in

parallel to communication has drawn the attention of both

academia and industry for years. By leveraging the channel

state information (CSI) extracted from a receiver, it is possible

to capture the “electromagnetic footprint” that the propaga-

tion environment embeds within the signal [4]. Through Wi-

Fi CSI analysis, recent deep learning (DL)-based approaches

yield impressive results in performing passive localization

[3] and activity recognition tasks [1].

However, as the demand for faster and energy-efficient

wireless communication keeps rising, newer technologies

than traditional sub-6GHz telecommunication networks are

being targeted: the attention has shifted to mmWave commu-

nications, which are the object of feasibility and resilience

studies in real-world applications [5]. Integrating the CSI-

based JCAS approach with mmWave communications can

lead to high-resolution ambient sensing, while also enabling

high-speed, directional communications, laying the founda-

tions for truly intelligent and adaptive wireless networks.

2 CSI PROCESSING ALGORITHM
Building on the framework suggested in [2], this work ex-

tends the application of the quantitative analysis of Wi-Fi

CSI to CSI samples collected in a communication system

operating at 28GHz. The goal is to be able to discriminate

scenarios (e.g., empty room, one person standing still, one

person walking) based on a quantitative analysis of CSI am-

plitudes. One CSI sample is extracted from each received

packet. It represents channel distortion measured at the re-

ceiver: C(𝑛) = 𝐴C (𝑛)𝑒 𝑗∠C(𝑛) where 𝑛 ∈ SC = [ −𝑁SC

2
,
𝑁SC

2
−1]

is the subcarrier index of the orthogonal frequency divi-

sion multiplexing (OFDM) modulation. In a collection of𝑀C
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Figure 1: Testbed at 28GHz.

CSI samples spanning over 𝑁
SC
subcarriers, we compute the

global maximum and minimum amplitude value and use

them to map all CSI amplitudes onto the [0, 1] interval. All
𝐴C are then quantized using𝑞𝑎𝑚𝑝 = 9 bits, representing them

as a vector of 𝑁
SC
integer values. Given two CSIs with the

same number of subcarriers, we can compute the normalized

distance between any two quantized samples Ci and Cj as:

𝑊𝐷 (𝐴Ci , 𝐴Cj ) =
1

𝑁
SC
(2𝑞𝑎𝑚𝑝 − 1)

∑︁
𝑛∈SC

|𝐴Ci (𝑛) −𝐴Cj (𝑛) | (1)

To keep a straightforward approach, we take the average

of the CSI amplitudes collected for each experiment as the

representative CSI of the collection:

𝐴★
C (𝑛) =

1

𝑀C

𝑀C∑︁
𝑘=1

𝐴C (𝑘, 𝑛) (2)

Finally, the similarity between two experiments 𝑖 and 𝑗 can

be estimated by the distribution of distances𝑊𝐷 between

the average of one experiment and all the CSI or the other:

𝑊𝐷 (𝐴Ci , 𝐴
★
Cj
); ∀𝑛 ∈ [1, 𝑀Ci ] (3)

3 EXPERIMENTAL SETUP
To analyze the algorithm’s feasibility in mmWave frequen-

cies, we set up an indoor testbed in our laboratory at TU

Berlin (cf. Fig. 1). The testbed operating at 28GHz features

a reflector-assisted communication system. The hardware

used for the setup includes the following components:

• Software-defined radios (SDRs): Two universal soft-
ware radio peripherals (USRPs) X410 units (National

Instruments) operating with a 500MHz master clock

rate, used for over-the-air communication.

Table 1: Number of CSI samples collected for each ex-
perimental scenario.

LoS 1 reflector 2 reflectors 3 reflectors

# CSI 422469 337454 487103 344074

• Clock distribution: One OctoClock CDA-2990 (Na-

tional Instruments) providing high-accuracy time and

frequency references to synchronize the USRPs.

• mmWave frontends: Two BBox Lite 5G modules

(TMYTEK) operating at 28GHzwith a 3 dB beamwidth.

• Frequency conversion: One UD Box 5G (TMYTEK)

for up/down-conversion between IF and 28GHz RF.

• Passive reflecting surfaces: Up to three (N = 3)

XRifle units (TMYTEK), passive non-reconfigurable

reflecting surfaces (NRRSs) featuring 51× 51 element

arrays, operating at 28GHz with a radar cross-section

gain of approximately 70 dB.

• Host machines: Two PCs with AMD Ryzen 9 7950X

16-core CPUs, 128GB RAM, and 100GbE interfaces.

On the software side, the MATLABWLAN Toolbox is used

to generate an OFDM waveform with a 320MHz bandwidth,

compliant with the IEEE 802.11be standard. The transmitter

continuously loops the generated waveform, while the re-

ceiver captures the signal for a duration of 10 seconds. We

conduct a total of four main experiments. In the first set,

N = 0, meaning that communication occurs solely via the

line-of-sight (LoS) path; the antennas shown in Fig. 1 are po-

sitioned facing each other with their beams properly aligned.

In the subsequent experiments, we gradually increase the

number of reflecting surfaces, i.e., N = 1, 2, 3.

Before introducing the conducted experiments, it is im-

portant to note the working principles of NRRSs. Each NRRS

reflects incoming signals at a fixed angle, with pre-configured

incidence and reflection directions. In the experiments, we

choose three NRRSs with an incident (INC) angle of 0° and

reflection (REF) angles of 45°, 30°, and 15°, respectively, to

create strong additional signal paths between the transmit-

ter and receiver. For each setup, traces are collected under

different conditions: an empty lab room, a person sitting or

standing still, and a person moving around the room.

4 RESULTS
The amount of data collected in the environment described in

Sect. 3 is summarized in Tab. 1. Since the number of reflectors

is the key feature of the experimental setup, computing the

distance between two experiments performed with different

values of N is meaningless. A different number of NRRSs

completely alters the structure of the environment from a

signal propagation point of view; therefore, CSIs collected

with different N are ‘semantically’ incomparable.



Poster: mmWave CSI-based Sensing: a Feasibility Study ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

0 0.05 0.1 0.15 0.2 0.25 0.3
Normalized Distance from average CSI of the empty room

10-4

10-3

10-2

10-1
Fr

eq
ue

nc
y

Empty Reference
Empty
Moving Behind
Moving In Front
Sitting
Sitting Nearby
Standing Nearby

(Exp. Setup 1) Line of sight (LoS), N = 0
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(Exp. Setup 2) One reflector, N = 1
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(Exp. Setup 3) Two reflectors, N = 2
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(Exp. Setup 4) Three reflectors, N = 3

Figure 2: Distributions of the normalized distance from
the average CSI of the reference Empty Room.

For each number of reflectors (N = 0 . . . 3), we select a

reference experiment, 𝐴𝑅
, performed in the Empty Room

from which to compute the distance distribution of all the

experiments. For all available experiments, including 𝐴𝑅
, we

compute𝑊𝐷 (𝐴𝑖
C, 𝐴

𝑅★
C ) (Eq. (3)). For 𝐴𝑅

, this corresponds to

the distance from its own average CSI, for all other captures,

we evaluate the distance from the average CSI of 𝐴𝑅
.

The distributions of𝑊𝐷 showcased in Fig. 2 highlight a

significant similarity of 𝐴𝑅
with its 𝐴𝑅★

C , with𝑊𝐷 values dis-

tinctly lower than the distances from the other experiments.

This behavior indicates how the CSI’s collected in the Empty

Room are very similar to each other, implying that a perfectly

static environment does not cause relevant variations of CSI

amplitude. Regardless of N , a person moving between the

reflectors and the receiver causes significant modifications to

𝐴C, which in turn results in a greater distance from𝐴𝑅★
C . This

outcome validates the intuition that the increased dynamism

of the scenario leads to a more variable propagation channel.

5 CONCLUSION
This introductory study on mmWave CSI-based sensing

demonstrates the applicability of a quantized amplitude-

based CSI similarity metric – originally proposed for Wi-Fi

CSI – to data collected on a system operating at 28GHz. The

presented results align with those observed in sub-6GHz

applications, suggesting that a more in-depth analysis could

yield a promising outcome.
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