Location-based Mechanism for Positioning of a Mobile Relay

Filip Lemic
Telecommunication Networks Group
Technische Universität Berlin
Einsteinufer 25, FT 5
Berlin, Germany 10587
lemic@tkn.tu-berlin.de

Anatolij Zubow
Telecommunication Networks Group
Technische Universität Berlin
Einsteinufer 25, FT 5
Berlin, Germany 10587
zubow@tkn.tu-berlin.de

Arash Behboodi
Institute for Theoretical Information Technology
RWTH Aachen University
Koperikusstraße 16
Aachen, Germany 52074
arash.behboodi@ti.rwth-aachen.de

Vlado Handziski
Telecommunication Networks Group
Technische Universität Berlin
Einsteinufer 25, FT 5
Berlin, Germany 10587
handziski@tkn.tu-berlin.de

Rudolf Mathar
Institute for Theoretical Information Technology
RWTH Aachen University
Koperikusstraße 16
Aachen, Germany 52074
mathar@ti.rwth-aachen.de

Adam Wolisz
Telecommunication Networks Group
Technische Universität Berlin
Einsteinufer 25, FT 5
Berlin, Germany 10587
wolisz@tkn.tu-berlin.de

ABSTRACT
Leveraging a relay for communication is a promising approach for improving throughput, coverage, and energy efficiency in wireless networks. A mobile relay that is capable of positioning itself at different locations opens the possibility for dynamic optimization of the path quality between the source and the nomadic destination. How to optimally position the mobile relay in order to maximize the path quality, however, remains a challenging task. Under the assumption that the physical location information of the devices are either known or can be estimated, we propose a mechanism for positioning of the mobile relay with the aim of maximizing the Signal-to-Noise Ratio (SNR) between the source and the destination. The proposed mechanism takes into account the practically unavoidable inaccuracies of estimated locations, as well as the propagation characteristics of a served environment. Using WiFi as an example technology, we experimentally evaluate the proposed mechanism in a complex indoor environment with the support of a specifically designed testbed infrastructure. For relatively small localization errors, our results show less than 4 dB difference between the measured SNR at optimal locations and the SNR at locations yielded by the proposed mechanism. Our results also illustrate how the quality of the paths created by the proposed positioning mechanism degrades in the face of increasing localization errors.

KEYWORDS
Mobile relay; location information; location awareness; propagation modeling; multi-wall model

ACM Reference format:
DOI: 10.1145/3132114.3132115

1 INTRODUCTION
Leveraging a relaying device to transmit information from a source to a destination is shown to enhance throughput, coverage, and energy efficiency of wireless communication [28]. If the destination device is nomadic, however, a fixed relaying device usually significantly constrains the achievable benefits. This fact motivates the use of mobile relaying in which the relaying device is capable of positioning itself in a served environment in a way that optimizes the path quality between the source and the destination [10]. However, it is still unclear how to find an optimal location of the mobile relay for such a scenario.

In this paper, we propose a mechanism for positioning of the mobile relay. Under the assumption that an environment is serviced by a localization service, we ground the decision about the optimal relay location on physical location information of the source and the destination. The proposed mechanism accounts for the errors in location information provided by the localization service, as well as for the propagation characteristics (i.e., path-loss and large-scale fading) of the served environment.

Due to its practical relevance, we assume a scenario in which the source device is unmovable with perfect information about its location. We further assume that the destination device is nomadic and its location information can be estimated by a localization service, but this information is burdened with a certain localization error. Moreover, we assume the availability of a mobile relaying device, where its location in the served environment can also be estimated with a certain level of accuracy. Since the contribution

CCS CONCEPTS
- Networks → Network experimentation; Network measurement; Mobile networks: Wireless access points, base stations and infrastructure; Network performance modeling;
of this work is not the relaying scheme itself, as an example, in our scenario we assume a simple repeater-like relay, i.e., there is no physical-layer combining of the original and relayed transmissions.

We evaluate the proposed mechanism in a complex indoor environment by leveraging a flexible testbed infrastructure for supporting such experimentation. We do in the 2.4 GHz Industrial, Scientific and Medical (ISM) frequency band using WiFi as an example technology, although the proposed mechanism can be applied for various other technologies for wireless communication. To demonstrate the baseline of the achievable performance of the proposed mechanism, we first evaluate the mechanism under relatively small localization errors, i.e., the smallest ones obtainable in our testbed environment. In case of relatively small per-coordinate localization errors of 10 cm, our results demonstrate less than 4 dB in average difference between the measured SNRs of optimal transmission paths and the measured SNRs of transmission paths through locations yielded by the proposed mechanism. Our results also characterize the loss of communication path quality as a function of increasing localization errors. Finally, we characterize the SNR enhancements due to mobile relaying supported by the proposed mechanism in comparison to direct transmission between end-devices.

2 RELATED WORK

Location information has a potential for improving the performance of wireless networks, as discussed e.g., in [7, 9]. Location information can be beneficial as an input to a decision-making mechanism in relaying, i.e., in the decision if and consequently which opportunistic relay should be utilized for transmitting information from the source to the destination, as discussed in [27, 30]. However, the aforementioned contributions assume that wireless propagation can be characterized with path-loss only, as well as that a perfectly accurate and instantaneous estimation of location information of the devices can be performed. Both assumptions are unrealistic in practice, which has already been recognized in the community. Hence, the authors in [25] consider the influence of information delay on location-based relaying. Furthermore, the influence of path-loss inaccuracies on location-based relaying is considered in [24]. The most similar to our contribution is the one made in [26], where the authors consider the joint influence of erroneous and delayed location information for optimizing location-based relaying.

In contrast to these contributions that are focused on deciding if a relay should be used and consequently on selecting the optimal relay, we focus on finding an optimal location of the mobile relaying device. Furthermore, we focus on environments with complex propagation in which propagation models based on path-loss only are not sufficient for accurate characterization of the propagation. Hence, in this work we leverage a more complex and presumably more accurate multi-wall model for indoor radio propagation [4]. Moreover, we do not assume high mobility of the destination device because of the fact that for scenarios with high mobility very frequent changes in the relay selection or location are needed. Those frequent changes introduce a large signaling overhead and essentially reduce or in some cases even remove the benefits of relaying, as discussed in [14]. Therefore, we assume location-based relaying in scenarios where the destination is a nomadic device. We believe that relaying is a suitable option for improving the path between the source and the destination only in scenarios with limited mobility. In the considered scenarios with slowly changing mobility, the practically unavoidable latency resulting from generating and reporting location information of the devices participating in the communication (as discussed in e.g., [18]) does not play an important role. Hence, in contrast to some of the aforementioned contributions, we do not consider delayed location information to be significant. Finally, we assume that location information of both the destination and of the relay are burdened with errors, while in [26] the authors assumed only one of them is erroneous. Due to this fundamental differences in assumptions, a comparative evaluation of the mechanism proposed in [26] and our mechanism is not possible, hence in the evaluation we focus only at the performance benchmarking of our mechanism for positioning of the mobile relay.

3 RELAYING SCENARIO

The envisioned relaying scenario is presented in Figure 1. As depicted in the figure, the aim of the source is to transmit information to the destination, which is achieved through the use of a mobile relay. Since the source is static, perfect location information of the source is assumed to be known to the network infrastructure. The environment is assumed to be served by a localization service deployed in the infrastructure. The localization service is able to estimate locations of the mobile relay and of the destination with a certain level of accuracy.

![Figure 1: Overview of the envisioned scenario](image)

The mechanism for positioning of the mobile relay is also deployed in the infrastructure. The goal of the mechanism for positioning of the mobile relay is to decide to position the relay at a location among multiple potential locations so that the path quality between the source and the destination is maximized. We specify the path quality between the source and the destination by leveraging the Policy 1 from [2]. We select this policy because it yields the best relaying performance among a set of evaluated ones, as reported in [2]. However, instead of taking the instantaneous Channel-State Information (CSI), we take the expected SNR between the source and the relay at a given location (i.e., $\text{SNR}_{S,R}$) and the expected SNR between the relay at a given location and the destination (i.e., $\text{SNR}_{R,D}$).
Location-based Mechanism for Positioning of a Mobile Relay

\(\text{SNR}_{R,D} \), This is because of the assumption that the relay remains at the same location during a communication session between the source and the destination. The path quality for a certain location \(i, i = 1, \ldots, N \), is then given by:

\[
\text{SNR}_i = \min \{ \text{SNR}_{S,R}, \text{SNR}_{R,D} \}. \tag{1}
\]

The optimal relay location among a set of \(N \) candidate locations, denoted as \(l^* \), is selected according to the following criterion:

\[
l^* = \arg \max_{i=1, \ldots, N} \{ \text{SNR}_i \}. \tag{2}
\]

Location information of all nomadic devices in the environment are specified with their \(x \) and \(y \) coordinates in a 2-Dimensional (2D) coordinate system. A per-coordinate error of location information is modeled by a zero-mean normally distributed random variable. Modeling per-coordinate localization errors with a Gaussian distribution is an established procedure, with some examples being [12, 31, 34]. Per-coordinate localization errors of the devices are assumed to have the same standard deviation \(\sigma \). This assumption is made because location information of the devices in a single environment are usually provided by the same localization service, hence statistically the same errors are expected for all of them.

4 LOCATION-BASED MECHANISM FOR POSITIONING OF A MOBILE RELAY

4.1 Euclidean Distance Between Devices

In the following, we derive expressions for the Euclidean distance between two devices in case one device’s location is erroneous and the other’s location is perfectly accurate, as well as in case both devices’ locations are erroneous.

4.1.1 Euclidean Distance Between Source and Relay. Suppose that the correct location information of the source is \((x_S, y_S) \). Furthermore, the potential location of the mobile relay is provided by the localization service \((X_R, Y_R) \), while its correct location is \((\mu_{x_R}, \mu_{y_R}) \). We assume that each 2D coordinate of the location information of the relay provided by the localization service is a normally distributed random variable specified by its mean value \(\mu \) and standard deviation \(\sigma \):

\[
X_R \sim \mathcal{N}(\mu_{x_R}, \sigma^2), \quad Y_R \sim \mathcal{N}(\mu_{y_R}, \sigma^2). \tag{3}
\]

Euclidean distance between the source and the mobile relay is therefore given by the following random variable:

\[
d = \sqrt{(X_R - x_S)^2 + (Y_R - y_S)^2}. \tag{4}
\]

Proposition 4.1. If the location of the relay is given according to Equation 3 and the correct location of the source is known, the Euclidean distance between the source and the relay is a Rice distributed random variable \(\text{Rice}(\lambda, \sigma) \) with parameters \(\sigma \) and \(\lambda \) with the Cumulative Distribution Function (CDF) given as follows:

\[
\text{F}_{X,R}(\delta) = \mathbb{P}(d \leq \delta) = 1 - Q_1 \left(\frac{\delta}{\sigma}, \frac{\lambda}{\sigma} \right), \tag{5}
\]

where:

\[
\lambda = \sqrt{\left(\mu_{x_R} - x_S\right)^2 + \left(\mu_{y_R} - y_S\right)^2}. \tag{6}
\]

Furthermore, \(Q_1 \) is the Marcum 1 function given by [3]:

\[
Q_1(a,b) = \int_b^\infty x \exp \left(-\frac{x^2 + a^2}{2} \right) I_0(ax) \, dx, \tag{7}
\]

for \(a, b > 0 \), where \(I_0 \) is a well-known modified Bessel function of the first kind.

Proof. The proof is given in Appendix 6.

4.1.2 Euclidean Distance Between Relay and Destination. Suppose that the potential location information of the relay and of the destination are provided by the localization service \((X_R, Y_R) \) and \((X_D, Y_D) \), while the correct locations are \((\mu_{x_R}, \mu_{y_R}) \) and \((\mu_{x_D}, \mu_{y_D}) \). Same as before, we assume that each coordinate of the location information provided by the localization service is a normally distributed random variable specified by its mean value \(\mu \) and standard deviation \(\sigma \):

\[
X_R \sim \mathcal{N}(\mu_{x_R}, \sigma^2), \quad Y_R \sim \mathcal{N}(\mu_{y_R}, \sigma^2), \quad X_D \sim \mathcal{N}(\mu_{x_D}, \sigma^2), \quad Y_D \sim \mathcal{N}(\mu_{y_D}, \sigma^2). \tag{8}
\]

Proposition 4.2. If the locations of the relay and the destination are given according to Equations 8 and 9, the Euclidean distance between the devices is a random variable distributed according to a Rice distribution \(d \sim \text{Rice}(\nu, \sqrt{2}\sigma) \) with the following CDF:

\[
\text{F}_{R,D}(\delta) = \mathbb{P}(d \leq \delta) = 1 - Q_1 \left(\frac{\nu}{\sqrt{2}\sigma}, \frac{\delta}{\sqrt{2}\sigma} \right), \tag{10}
\]

where:

\[
\nu = \sqrt{(\mu_{x_R} - \mu_{x_D})^2 + (\mu_{y_R} - \mu_{y_D})^2}. \tag{11}
\]

Moreover, \(Q_1 \) is again the Marcum 1 function, as specified previously with Equation 7.

Proof. The proof is given in Appendix 6.

4.2 Propagation Modeling

For modeling wireless propagation in the served environment we use the COST 231 multi-wall model [4]. In the model, path-loss and large-scale fading (shadowing) are considered. For the envisioned scenario, we believe that it is important to model only the long-term behavior of the wireless channel. Small-scale (multi-path) fading could, due to destructive interference, create deep fades that will affect the quality of a communication path, as discussed in e.g., [19]. However, due to small-scale mobility of the destination device (e.g., the device being held by a person) and due to the fact that we are predominantly considering complex indoor environments in which there is a constant change in small-scale fading (e.g., people mobility, doors opening/closing, etc.), these deep fades are expected to have a short-time span. Additionally, in practice there is a certain time required by the mobile relay to position itself to a location yielded by the proposed mechanism. Since we want to position a relay at a long-term optimal location, we do not model small-scale fading, which is a well-established procedure in location-based mechanisms for the selection of opportunistic relays, e.g., [24, 26]. The applicability of the used model for complex indoor environments has been demonstrated e.g., in [5, 16]. In the model, the signal attenuation \(L(d) \) in dB is given by:
We assume that SNR is measured in dB. To use this SNR value for positioning of the relay later, one option is to use the expected SNR by leveraging modified random variable, as given with Equation 10, the expected SNR between the relay and the destination is given as follows:

\[
\text{SNR}_{R,D} = \ln \frac{P_{tx}}{N K (\sqrt{2} \sigma)^2} - \frac{\gamma}{2} \ln \left(\frac{\lambda^2}{\sigma^2} g (\frac{\lambda^2}{\sigma^2}) \right),
\]

where the function \(g(.) \) is defined as:

\[
g(\xi) = \exp \left(\int_{\xi/2}^{\infty} e^{-t} \frac{1}{t} dt \right)
\]

4.2.1 Expected SNR Between Source and Relay.

Proposition 4.3. Assuming the Euclidean distance between the source and the relay is a Rice (i.e. non-central Chi) distributed random variable, as specified with Equation 5, the expected logarithm of SNR between the source and the relay at a certain location is given as follows:

\[
SNR_{S,R} = \ln \frac{P_{tx}}{N K (\sqrt{2} \sigma)^2} - \frac{\gamma}{2} \ln \left(\frac{\lambda^2}{\sigma^2} g (\frac{\lambda^2}{\sigma^2}) \right),
\]

where the function \(g(.) \) is defined as:

\[
g(\xi) = \exp \left(\int_{\xi/2}^{\infty} e^{-t} \frac{1}{t} dt \right)
\]

Proof. See Appendix 6.

4.2.2 Expected SNR Between Relay and Destination.

Proposition 4.4. Assuming the Euclidean distance between the relay at a certain location and the destination is Rice distributed random variable, as given with Equation 10, the expected SNR between the relay and the destination is given as follows:

\[
\text{SNR}_{R,D} = \ln \frac{P_{tx}}{N K (\sqrt{2} \sigma)^2} - \frac{\gamma}{2} \ln \left(\frac{\lambda^2}{\sigma^2} g (\frac{\lambda^2}{\sigma^2}) \right),
\]

where the function \(g(.) \) is given by Equation 17.

Proof. See Appendix 6.

4.3 Discussion

In the two hop transmission through a relay, the expected SNR is the minimum one among the expected SNR between the source and the relay (i.e., \(SNR_{S,R} \)) and the expected SNR between the relay and the destination (i.e., \(SNR_{R,D} \)), as specified by Equation 1. The proposed mechanism yields a location of the relay by comparing the expected SNRs of transmissions through relays at different potential locations in the served environment, as defined by Equation 2. The location yielded by the mechanism is the one that maximizes the expected SNR. The relay can then be instructed to position itself at that location. The potential locations of the relay can be defined in a grid-like fashion or in any other constellation. This decision is currently left to the network administrator. Note that the decision if a direct or a relayed transmission should take place can also be based on the expected SNR by leveraging modified Equation 16, where the location of the destination should be used instead of the location of the relay. The proposed mechanism for positioning of a mobile relay leverages the multi-wall model for modeling large-scale fading and path-loss. The multi-wall model assumes that a floor plan of the served environment is used for determining the number of walls in the direct path between the devices. The requirement for the availability of a floor-plan does not pose a challenge for the deployment of the proposed mechanism. The floor-plan will usually be available because the environment is serviced by a localization service and such a service usually requires a floor plan of the served environment.

Furthermore, the multi-wall model requires an estimation of model parameters, i.e., the wall attenuation \(l_w \), the path-loss coefficient \(\gamma \), and the constant \(l_c \) related to a model fitting procedure. The model fitting is a procedure of calculating model parameters using measurements collected at different locations in a targeted environment. The used model fitting is a simple least-square fitting procedure given as follows:

\[
[l_c, l_w]_{\text{opt}} = \arg \min_{l_c, l_w} \sum_{m=0}^{M-1} \left| P_m - (P_{tx} - L(d_m))^2 \right|.
\]
the necessary measurements is crowd-sourcing. In crowd-sourcing, location-aware mobile devices in an environment opportunistically collect measurements, in this case RSS scans [8, 32]. These measurements are then, together with their respective locations, reported to the infrastructure and can be leveraged for calculating the model parameters l_c, γ, and l_w. The measurement locations can be obtained from a localization service that is servicing the environment.

5 EVALUATION

In the evaluation, we aimed at examining the difference between the measured SNRs at the optimal locations among the potential ones and the measured SNRs at locations yielded by the proposed mechanism. We performed our experimental evaluation using WiFi (IEEE 802.11 b/g) as an example technology, although the proposed mechanism can conceptually be used with other technologies for wireless communications. Note that, we did not evaluate the accuracy of modeling of SNR values using the COST 231 multi-wall model, even though that would have been a natural first step in the evaluation. This is because the evaluation of the accuracy of modeling of SNR values was carried out previously for the setup, with the evaluation results reported in [6] (Section 6.1).

For our evaluation we selected the TWIST testbed environment, with a footprint given in Figure 2. The TWIST testbed is deployed in an office environment with typical usage patterns. At the same time, the testbed features a highly controllable infrastructure for supporting various experimental scenarios with Radio Frequency (RF) technologies [15, 17]. Using an autonomous mobility platform, which is a part of the experimentation infrastructure, we were able to very accurately position the relay device at different locations in the environment. The per-coordinate accuracy of positioning of the autonomous mobility platform in the testbed environment is in average roughly 10 cm [17]. The locations of the relay device were defined in a grid-like fashion, as indicated with red dots in the figure (with some small deviations due to obstacles in the environment).

![Figure 2: Locations of APs and evaluation points](image)

We used six WiFi Access Points (APs) in our evaluation, with their locations as indicated in Figure 2. The locations of the APs were presurveyed using a sophisticated Tachymeter Typ TS 06 Plus (Leica) device and were, hence, known with a very high level of accuracy, i.e., with the average localization errors of less than 2 mm [17]. In the evaluation, each AP was in turn used as the source of information, while all the others were used as destinations. To support the previously discussed scenario, we added a certain level of localization inaccuracies to the location information of APs that were used as destinations. These inaccuracies were introduced by adding a number drawn from a zero-mean Gaussian distribution with a given σ to the perfect location information obtained through presurveying. As the result, the location of the source was in each instance of the experiment perfectly accurate, while the location of the destination and the potential locations of the mobile relay were burdened with inaccuracies characterized by the parameter σ.

At each measurement location we performed 40 scans for WiFi beacon packets from the six APs, followed by extracting Received Signal Strength Indicator (RSSI) values from the obtained beacon packets. 40 scans were taken to reduce the temporal variability due to small-scale fading from the measurements. The APs were TL-WDR4300 wireless routers operating in the 2.4 GHz ISM frequency band (channel 11) with their transmission powers set to 20 dBm (100 mW). The used routers feature 3 transmitting antennas, thus the spatial variability due to small-scale fading is reduced in the measurements. The receiver of beacon packets transmitted by the APs was a MacBook Pro notebook with the AirPort Extreme network interface card. The experiments were performed during a weekend, when no people were present in the testbed premises. Furthermore, in the testbed all neighboring uncontrollable WiFi nodes are operating in the 5 GHz ISM frequency band [11], thus the interference was minimized during the experimentation.

Two measurement collections were performed at separate days. The first one was used for the least square fitting procedure (Equation 19), i.e., for calculating the multi-wall parameters. The procedure yielded wall attenuation l_w of 4.72 dBm, path-loss coefficient γ of 1.74, and constant l_c of 46.73 dBm. The second collection of measurements was used for the evaluation of the proposed mechanism. The evaluation procedure involved use of Equations 16 and 18 for calculating the expected SNRs between the source and the mobile relay at different locations, and the mobile relay at different locations and the destination, respectively. The expected SNR of each potential path was obtained by leveraging Equation 1. The location of a path that maximizes the expected SNR was selected as the optimal one by the proposed mechanism according to Equation 2.

This was done for each of 41 mobile relay locations and by leveraging each one of six APs as the source, while all the other APs were in turn used as the destinations. The procedure yielded 15 relaying decisions, where in each of them 41 different transmission paths were considered (one for each potential location of the mobile relay). In our environment, we had a full coverage with all used APs, so in our relaying mechanism and consequently in the evaluation the transmission range did not play an important role. However, the range can be easily introduced into the mechanism by specifying a cut-off SNR value below which the communication cannot take place.

As a reference for evaluating the decisions made by the mechanism, we leveraged the measured averaged SNR values. The measured averaged SNR value for a given AP at a certain measurement location was obtained by averaging the RSSI values from that AP measured at that measurement locations. Furthermore, from the obtained averaged RSSI value from a certain AP at a given location we subtracted the network interface card’s noise floor of -96 dBm. This procedure yielded reference SNR values from different APs as observed at each measurement location, which were further used for finding the optimal transmission path, i.e., the one that maximizes the measured averaged SNR between the end-devices.
We selected the range of localization errors (with a certain error in positioning) will be at most 3 m due to relaying an additional delay, as well as an increase in the expected per-axis location error. Moreover, it will take a certain amount of time for the relay to position itself at a certain location and establish a path between the source and the destination. Hence, the potential user could question the initiative for using such a communication paradigm, in comparison to directly transmitting the information from the source to the destination.

5.1 User’s Perspective

Despite its aforementioned benefits, leveraging the mobile relay for communication between the end-devices has a set of drawbacks. In practice, it will take a certain amount of time for the relay to position itself at a certain location and establish a path between the source and the destination. It is also possible that the relay is not able to reach the desired location, for example due to an obstacle. Moreover, due to relaying an additional delay, as well as an increase in jittering, the mobile relaying imposes an added complexity and it increases the utilization of radio resources.

Figure 3: Loss of path quality in the proposed mechanism due to the selection of relay locations that do not maximize the measured averaged SNR as a function of increased per-axis localization errors σ

Figure 4: Difference between the averaged measured SNR of a path through the location yielded by the mechanism and the averaged measured SNR of a direct path between end-devices for different per-axis localization errors σ
per-axis localization errors σ. The results are depicted in Figure 4. As visible from the figure, for the relatively small per-axis localization errors σ of 10 cm, the SNR of a path through the mobile relay is in average more than 9 dB higher than the SNR of a direct path between the source and the destination. As the expected localization errors increase, this difference becomes smaller, since the locations yielded by the proposed mechanism become less optimal in terms of SNR maximization. Example-wise, for the per-axis localization error increase from 10 cm to 1 m, the averaged difference between in the SNR of a relayed and of a direct path reduces from roughly 10 to around 5 dB. Note that, as depicted in the figure, this difference can be a negative number. This can happen for multiple reasons. First, the proposed mechanism for positioning of the mobile relay can yield a non-optimal location, hence the achieved SNR through the relayed path can be smaller than the SNR of the direct path. Second, it can happen that the distance between the source and the destination is smaller than the distance between either the source or the destination and the potential location of the mobile relay. Third, if all paths through a relay are heavily obstructed and only the direct provides a Line of Sight (LoS) connectivity (e.g., in a hallway), it can happen that the SNR of the direct path is larger than the SNR of any path through the relay.

6 Conclusion

In this paper, we proposed a location-based mechanism for positioning of a mobile relaying device. The proposed mechanism accounts for the localization inaccuracies of the communicating devices for the assessment of propagation characteristics of the environment, which is then used for finding the location where the relay should be positioned. The proposed mechanism estimates the expected SNR, hence for positioning of the relay it does not rely on a feedback information about the path quality from the end-devices participating in communication. Since there is no signaling from the source or the destination to the relay, there is no transmission interruption between the source and the destination until the relay positions itself to a location yielded by the proposed mechanism.

Note that the proposed mechanism is not limited to the assumed scenario, but can be utilized more broadly, e.g., in case of multi-hop relaying, in case the location information of the source is burdened with errors, in case the location information of the destination is perfectly accurate or in case the location information of both the source and the destination devices are burdened with errors. Furthermore, the proposed mechanism works for both downlink and uplink transmission paths. In addition, although we discussed the mechanism in terms of mobile relaying, it is straightforward to apply the same mechanism for the selection of potential relays among a set of opportunistic candidates, as for example discussed in [21, 26, 35]. Although we assumed a simple repeater-like relay, in combination with our location-based mechanism for positioning of the mobile relay, more advanced relaying schemes are also applicable. Furthermore, the mobile relay is considered to be a part of the wireless infrastructure, hence it is a trusted entity. Hence, the usual security and privacy related pitfalls of relaying in wireless networks [23] do not apply here, in contrast to opportunistic relaying through generally untrusted mobile devices, e.g., [25].

Our evaluation results demonstrate a small difference between the SNR of optimal paths and the SNR of paths through locations yielded by the proposed mechanism. We further demonstrate the benefits of relaying using the proposed mechanism in terms of the SNR enhancements, in comparison to direct communication between the source and the destination. For the current commercial of-the-shelf localization approaches with expected localization errors of roughly 0.5 m per-axis [20], the mechanism can already provide very good performance in terms of selecting a close-to-optimal location where the relay should be positioned and in terms of enhancements in the SNR, in comparison to direct transmission between the end-devices.

Currently, the specification of potential locations of the mobile relay is left to the network administrators, which could result in either over-provisioning on the number of locations or in failing to specify locations that could maximize the benefits of relaying. Obviously, this specification should define potential relay locations so that the whole environment is considered for positioning of the relay. However, the “drifts” in potential locations of the mobile relay should not occur. To avoid these drifts, we believe the expected localization accuracy in the served environment should be taken into account in the specification of potential relay locations. We speculate that the per-axis distance between neighboring potential locations of the mobile relay should be three times larger than the per-axis localization error σ, so that the loss of path quality is contributed only to the inaccuracies of the propagation model. Future work will be oriented toward evaluating this hypothesis by examining an interplay between the density of potential relay locations, expected localization accuracy, and the performance of the proposed mechanism. We hope these future efforts will yield a methodology for optimal specification of potential locations of the mobile relay. Moreover, while in this work we considered a scenario with one relay and one destination, future work will also consider scenarios in which one or multiple relays have to be positioned in a way that optimizes path qualities for multiple destinations.

Appendix

Proof of Proposition 4.1

Proof. Note that $(X_R - x_S) \sim N(\mu_{X_R} - x_S, \sigma^2)$ and $Y_R - y_S \sim N(\mu_{Y_R} - y_S, \sigma^2)$. Therefore the Euclidean distance d between the source and the relay follows:

$$d = \sqrt{(X_R - x_S)^2 + (Y_R - y_S)^2} \sim Rice(\bar{\lambda}, \sigma),$$

where $\bar{\lambda}$ is given by Equation 6.

Note that $\frac{X}{\sigma}$ has unit variance and is indeed a noncentral chi distribution with degrees of freedom equal to 2 and the noncentrality parameter is given by $\frac{\bar{\lambda}}{\sigma}$, denoted by $\chi(2, \frac{\bar{\lambda}}{\sigma})$. \hfill \Box

Proof of Proposition 4.2

Proof. $X_R - X_D$ is difference of two independent Gaussian random variable which is itself a Gaussian random variable with variance $2\sigma^2$ and mean value $\mu_{X_R} - \mu_{X_D}$. Similarly, one can see that $Y_R - Y_D$ is a Gaussian random variable with $2\sigma^2$ and mean value $\mu_{Y_R} - \mu_{Y_D}$. Therefore, the distance d follows Rice distribution $d \sim Rice(\bar{\nu}, \bar{\theta})$ with parameters $\bar{\nu} = \sqrt{(\mu_{X_R} - \mu_{X_D})^2 + (\mu_{Y_R} - \mu_{Y_D})^2}$ and $\bar{\theta} = \sqrt{2\sigma}$. Note that similar proofs of this and previous propositions are given in [1], however for the distance between two univariate Gaussian distributions. \hfill \Box
Proof of Proposition 4.3
Proof. From Equation 15, d being Rice distributed random variable, the expected logarithm of SNR is given as follows:

$$\mathbb{E}\left(\ln \frac{P_x}{N_k \sigma^2}\right) = \frac{P_x}{N_k \sigma^2} - \frac{1}{2} \mathbb{E}\left(\ln \frac{d^2}{\sigma^2}\right).$$ \hspace{1cm} (21)

Note that $\frac{d}{\sigma}$ has noncentral Chi distribution $\chi^2(2, \frac{d}{\sigma})$. Therefore (d/σ) is a non-central Chi square distributed random variable. In [22, Theorem 3], the expected value of logarithm of general noncentral Chi square random variable $X \sim \chi^2(2, \xi)$ was derived as:

$$\mathbb{E}\left(\ln X\right) = \ln \xi + \mathbb{E}(\xi).$$ \hspace{1cm} (22)

where:

$$g(\xi) = \exp \left(\int_{\frac{d}{\sigma}}^{\infty} \frac{e^{-t}}{t^2} dt\right).$$ \hspace{1cm} (23)

The proof follows by using $X = \frac{d}{\sigma}^2$ and $\xi = \frac{d^2}{\sigma^2}$. \qed

Proof of Proposition 4.4
Proof. The proof follows a similar procedure as above with different normalization. The expected SNR is given as:

$$\mathbb{E}\left(\ln \frac{P_x}{N_k \sigma^2}\right) = \frac{P_x}{N_k (2\pi)^{1/2} \sigma} - \frac{1}{2} \mathbb{E}\left(\ln \frac{d^2}{2\pi \sigma^2}\right).$$ \hspace{1cm} (24)

The expected value is evaluated using Equation 22 with $\xi = \frac{d^2}{2\pi \sigma^2}$. The proposition follows accordingly. \qed

ACKNOWLEDGMENTS
The research leading to these results has received funding from the European Horizon 2020 Programme in the scope of the EU eWINE Project (Nr. 688116).

REFERENCES
Location-based Mechanism for Positioning of a Mobile Relay
Filip Lemic, Viado Handziski, Anatolij Zubow, Adam Wolisz
Telecommunication Networks Group
Technische Universität Berlin, Germany
Arash Behboodii, Rudolf Mathar
Institute for Theoretical Information Technology
RWTH Aachen University, Aachen, Germany

Introduction
• Relaying improves throughput, coverage, and energy efficiency;
• A mobile relay enables dynamic optimization of the path quality;
• How to position a mobile relay?

Location-based Mobile Relaying

Location Awareness in Wireless Networks
• A potential for location-based positioning of a mobile relay;
• Location information of mobile devices are generally not ideal.

Location-based Mobile Relaying

Path Quality
• Path quality→ expected SNR:
 → Between the source and the relay;
 → Between the relay and the destination;

\[
\text{SNR}_l = \min \left\{ \text{SNR}_{SR}, \text{SNR}_{RD} \right\}
\]
(1)

• Relay location that maximizes the SNR is optimal;

\[
P' = \arg \max_{i=1,...,N} \left\{ \text{SNR}_i \right\}
\]
(2)

Notes
• The proposed mechanism is not limited to the assumed scenario:
 → Multi-hop relaying and opportunistic relay selection;
 → Location information of the source is burdened with errors;
 → Location information of the destination is perfectly accurate;
 → The mobile relay is a part of the wireless infrastructure → a trusted entity.

Expected SNR
• Propagation modeling → COST 231 Multi-wall model:

\[
L(d) = l_0 + 10 \gamma \log(d) + M_d, \quad \text{where:} \quad M_d = \sum_{i=1}^{N} l_i
\]
(9)

• Source and relay:

\[
\text{SNR}_{SR} = \ln \left(\frac{P_s}{N_0} \right) - \frac{\gamma}{2} \ln \left(\frac{X^2 + Y^2}{X^2 + Y^2} \right)
\]
(10)

• Relay and destination:

\[
\text{SNR}_{RD} = \ln \left(\frac{P_d}{N_0} \right) - \frac{\gamma}{2} \ln \left(\frac{X^2 + Y^2}{X^2 + Y^2} \right)
\]
(11)

Evaluation
• Aim: compare decisions made by the mechanism with measured reference values;
• Result: Loss in SNR due to wrong decisions;
• 41 relay × 6 source/destination locations, (WiFi);
• Robotic platform for positioning of a measuring device;

Selection of sub-optimal locations

Comparison to a direct path

Notation
• Source and relay:

\[
X_S = x_S, \quad Y_S = y_S \quad (3)
\]

\[
X_R \sim \mathcal{N}(\mu_{R}, \sigma^2), \quad Y_R \sim \mathcal{N}(\mu_{R}, \sigma^2) \quad (4)
\]

• Relay and destination:

\[
X_D \sim \mathcal{N}(\mu_{D}, \sigma^2), \quad Y_D \sim \mathcal{N}(\mu_{D}, \sigma^2) \quad (5)
\]

\[
X_R \sim \mathcal{N}(\mu_{R}, \sigma^2), \quad Y_R \sim \mathcal{N}(\mu_{R}, \sigma^2) \quad (6)
\]

Distances Between Devices
• Source and relay → Rice distributed variable \(d \sim \text{Rice}(\rho, \sigma) \):

\[
F_{SR}(\delta) = P(d \leq \delta) = 1 - Q_1 \left(\frac{\delta}{\sigma} \right)
\]
(7)

• Relay and destination → Rice distributed variable \(d \sim \text{Rice}(\rho, \sqrt{2}\sigma) \):

\[
F_{RD}(\delta) = P(d \leq \delta) = 1 - Q_1 \left(\frac{\rho}{\sqrt{2}\sigma} \right)
\]
(8)

Acknowledgments
This work has received funding from the EU eWINE Project (Nr. 688116).

ACM MSWiM’17
The 26th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
November 21-25, 2017
Miami Beach, FL, USA