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Abstract—In dense deployments of residential WiFi networks
individual users suffer performance degradation due to both
contention and interference. While Radio Resource Management
(RRM) is known to mitigate this effects its application in residen-
tial WiFi networks being by nature unplanned and individually
managed creates a big challenge.

We propose ResFi - a framework supporting creation of RRM
functionality in legacy deployments. The radio interfaces are used
for efficient discovery of adjacent APs and as a side-channel to
establish a secure communication among the individual Access
Point Management Applications within a neighborhood over the
wired Internet backbone.

We have implemented a prototype of ResFi and studied its
performance in our testbed. As a showcase we have implemented
various RRM applications among others a distributed channel
assignment algorithm using ResFi. ResFi is provided to the
community as open source.

Index terms— Residential WiFi, radio resource manage-
ment, distributed algorithms, self-organization

I. INTRODUCTION

In recent years we have seen a rapid growth in the use
of wireless devices such as tablets and smart phones in all
environments, e.g. enterprise and homes. Especially, the IEEE
802.11 (WiFi) wireless technology gained lot of popularity
as a comfortable way to connect a multitude of devices. As
applications like mobile HD video require high QoS, dense de-
ployments of wireless technologies observed nowadays cause
performance issues due to high contention and interference
within the limited set of radio frequencies. In enterprise
networks, remaining within a single administrative domain,
this issue is commonly solved by installing a centralized
controller which manages the usage of radio resources of all
APs [1], [2]. The performance of this controller depends on
the scope of information used – this is at least the sum of
the traffic and channel usage observations by all the APs but
gradually a trend to use also information provided by the end
systems (e.g. 802.11k) becomes also visible. It has been widely
demonstrated that the coordinated usage of radio resources has
led to very significant improvement of the QoS, and in fact it is
a fundamental condition to achieve satisfactory QoS in dense,
heavily used environments. In contrast residential deployments
usually consist of multiple autonomous APs remaining under
administration of individual users. Indeed, each AP is usually
installed by a resident who due to lack of technical skills
attempts to minimize the configuration effort. While in the past

this led to the well-known phenomenon of using mostly the
single, pre-set channel, manufacturers started increasing the
scope of self-configuration functions provided. The scope of
this self-configuration is, however, still limited to functions de-
pending exclusively on local observations within this AP and
local controls. In the residential deployment the individual APs
- even located in close proximity - do not have a direct way
to enter an organized information exchange and negotiations.
In addition, the usual consumer electronic devices expected
in an apartment usually do not support management features
like those provided by 802.11k, so that no information can be
obtained from them.

In this paper we present ResFi - a set of basic self-config-
uration functionalities enabling radio resource management in
residential WiFi. ResFi offers the following functionalities:

1) Discovery of the immediate neighborhood – any active
APs within the radio coverage.

2) Setting up secured point-to-point control channels be-
tween any pair of immediate neighbors over the wired
Internet backbone.

3) Exchange of N-hop neighborhood information and con-
tinuous monitoring using the above channels.

ResFi is specified and implemented in form of platform
independent source code which can be used on top of legacy
APs. Up to our best knowledge this is a first attempt to suggest
such a platform. We believe that this set of basic function
creates a good foundation to develop management application
algorithms which itself is explicitly a NON goal of this paper.
As a proof of concept we provide however:

• A description, implementation and evaluation of a simple
distributed AP channel assignment algorithm.

• A description and prototypical implementation of a sim-
ple distributed clustering algorithm to show the suitability
of the proposed API.

The performance of the proposed approach is evaluated by
means of experiments in real testbeds. Moreover, we provide
an emulation in Mininet [3] to give developers an easy way
to test own algorithms before deployment in a real testbed.
Finally ResFi is provided as open source under a GPL on
https://github.com/resfi.
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II. RELATED WORK

WiFi enterprise networks are already widely deployed in
companies, universities and public spaces like airports and
fairgrounds. Commercial enterprise WiFi solutions mostly
feature a centralized controller which performs RRM for all
attached APs. For example the widespread CISCO solution [4]
works as follows: each of the APs sends periodically on all
the radio channels ”neighbor search” messages including the
Internet protocol address of their responsible controller and the
identifier of the group they belong to within this controller.
Neighboring APs forward the received ”neighbor search”
message including their own AP identifier to their responsible
controller (frequently via the wired control connection). This
enables the controller to build a hearing map, group APs in
RRM groups or to elect a leader controller for the RRM
process. Distributed approaches are less frequent - e.g. Aero-
hive [5] uses a classical distributed leader election algorithm
for RF channel assignment. If a newly started AP discovers
other APs on his RF channel, it advertises its neighbor count
via the wireless channel while listening for the advertisements
of other APs. Finally the AP with the most neighbors wins
the right to use the channel. All others switch to the next RF
channel and the aforementioned procedure repeats.

Different options to optimize RRM in enterprise WiFi
networks have been addressed in research papers. Again the
use of a central controller using wireless propagation data,
collected from all deployed APs [1], [2], [6], [7], [8] dominates
the field. The centralized view is then used to make global
decisions in terms of e.g. channel assignment. In addition,
more advanced approaches also provide the possibility of load
balancing and handover operations [1], [2], [7] or transmit
power and rate adaption control [6].

A typical residential WiFi deployment usually consists of
statically deployed APs and mobile client STAs. As the APs
are not administered by a single authority but rather as each AP
is independently managed by another unexperienced user, res-
idential WiFi deployments can be assumed as chaotic [9]. The
density of APs is highly correlated with the residential density
and large-scale measurements [10] showed that the number
of neighboring APs is relatively high in urban environments,
i.e. each AP has on average around 16.8 neighboring APs
in the 2.4 GHz band. In this chaotic deployment there does
NOT exist a natural way to establish the information exchange
between each of them. There does not exist a dedicated
controller, and the skills of the “human administrator” are
usually limited. Patro et al. [11] have postulated the use of
a cloud-based controller for channel assignment and airtime
management. They propose to run one controller per building
either funded by an Internet service provider (ISP) or the build-
ing manager. Further, the interaction between the residential
APs and the controller is enabled by an extended version of
the OpenFlow protocol. This approach seems promising for
single administered apartment houses (single ISP or single
building manager) but due to the lack of an auto configuration
possibility it has its difficulties for all other deployment

scenarios. Besides, the funding of the centralized controller
and the payment of its operational costs is not easy to clarify.
A controller-less solution would be favorable.

In RxIP [12] a novel approach: direct communication be-
tween neighboring APs is introduced for the first time. Each
home AP transmits a globally-routable IP address through ad-
ditional information embedded within the periodically broad-
casted beacon frames. This allows passively listening neighbor
APs to communicate with the transmitter over the wired
Internet, thus featuring a P2P fashion of interaction. RxIP does
not aim RRM in general but rather targets the specific use-
case of hidden terminal discovery and mitigation of its effect.
In dialog with its neighbors, each AP collects independently
the information about potential hidden terminals related to
him. Therefore the RxIP approach is by definition restricted to
discovery of only those neighboring APs which use the same
RF channel. Nevertheless a more global view seems to be
desirable. Using large-scale measurement data from several
cities Akella et al. [9] showed that end-client experience
in home WiFi networks could be significantly improved by
managing the transmit power in such chaotic wireless net-
works. Using their proposed load-sensitive rate fallback imple-
mentation in which transmitters reduce their transmit power
even if it reduces their transmission rate, they were able to
show significant throughput enhancement through interference
reduction among neighboring APs in dense deployments by
incorporating among others the traffic demands of neighboring
APs. They did, however not provide suggestions how the
relevant stations are to be selected and how should they
exchange the necessary coordination information.

Finally numerous papers have addressed distributed radio
resource management. For example in [13] power assignment
in arbitrary wireless topologies has been assigned in a dis-
tributed way. Nevertheless none of these papers investigates
specifically HOW to assure connectivity needed for informa-
tion exchange among the involved nodes.

III. RESFI DESIGN PRINCIPLES

A. System Model

Our view of the “chaotically deployed” WiFis is presented
in Fig. 1. Each static AP is assumed to have two network
interfaces, namely, an IEEE 802.11 compliant air interface
used for wireless communication towards STAs and a wired
broadband access interface with a globally-routable IP address
to connect to the Internet usually via DSL or cable modem. As
we assume DSL/cable as the wired access technology there is
significant last-mile latency on the wired link to the first hop
inside the ISP’s network [14]. We assume that the APs in
a given neighborhood are deployed gradually (meaning they
are switched on for the first time one by one), Any AP might
also be switched off at any time – temporarily or for good. We
assume also that every AP is controlled by an AP management
unit (APMU) which consists of several functional blocks such
as client access control and operational parameter setting (like
beacon interval setting). In classical deployment each AP has
some - rather simplistic - local radio resource management
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Fig. 1. A residential WiFi network consists of client Stations (STA) and
Access Points (AP). Each AP is connected via wired broadband access to the
Internet.

e.g. setting of a fixed transmission channel, or simple selection
of the transmission channel. We postulate introducing in each
AP a dedicated process called radio resource management unit
(RRMU) which is assumed to have IP connectivity over the
wired Internet backhaul. Moreover, the RRMU is assumed to
have an API (called southbound API) making it possible to
access radio statistics and parameters within the AP.

B. Principles of the ResFi Framework

The goal of ResFi is to define a self-organized creation of
a secured connectivity among the RRMU of all APs within a
given neighborhood without:
• Violating the assumptions of keeping each of the partic-

ipating APs under separate local management
• Any changes in the hardware and drivers of commercially

available access points
The approach can be presented in a nutshell as follows: During
the boot-up phase of any AP a broadcast scan request including
a ResFi vendor specific information element (IEV) containing
so called ”contact data” is triggered sequentially on each
of the supported channels. Any AP within the coverage of
this scan request is expected to answer with the respective
”contact data” of the responder. This is possible by inserting
a broadcast SSID within the probe request which triggers a
response from all networks which have been able to receive
this request. The contact data, embedded in a IEV of both
the active scan probe and response consists of the globally-
routeable IP address and port number of the AP’s RRMU (on
the fixed internet) as well as of a transient one-hop group
encryption key and a public cryptography key individual to this
RRMU. After having completed the scan and having received
the answers, the RRMU of the newly booted AP can establish
a secure, point-to-point control channel to the RRMUs of
all the ”discovered” APs over the wired backbone Internet.
Placing the control channel into the wired connectivity has
several advantages. Notably there is no additional load on the

wireless interfaces, and there is obviously a lower error rate.
On the other hand longer message exchange delays have to
be taken into account. This does not seem to be really a big
issue, as the radio resource management does not take place
in very short time scales. Thus coordination within one-hop
neighborhood would be available at this point. It is, however,
well known that RRM (e.g. channel selection) can achieve
better efficiency if performed over a cluster of APs larger
than one hop neighborhood. Therefore ResFi requires that each
RRMU is able to act as a forwarder enabling to extend secure
connectivity towards up to N hops (N can be set individually
for every message sent via ResFi’s northbound framework
API). ResFi does not define the precise policy to create an
RRM cluster within the scope of the connectivity borders
mentioned above; neither does it feature a specific RRM
approach. Both of these decisions are delegated to an RRM
application which is not a part of the platform itself. We will
provide in Section VII some examples of such applications.

The security of the control channel is not constrained to
the establishment with the use of proper cryptographic keys;
in addition the keys are occasionally exchanged (see the
following part).

C. ResFi Security Model

Why do we care about the security of the control channel
for cooperative RRM? The reason is very simple. Malicious
action might severely harm the wireless access of some users,
and lead to an unfair advantage of some AP owners. While
”unfair cheating” behaviors cannot be completely eliminated
(e.g. some AP might claim that there are numerous APs
in his vicinity thus luring neighbors to leave a channel for
him alone) we offer within our framework a set of measures
leading to clear identification of the source and destination
of any information as well as assuring the integrity of any
information exchanged via the control channel. By the set of
this means we can at least be sure, that the possible malicious
behavior of any of the participants might be - after detection
- uniquely traced back to this participant. And there will be
no way this participant might claim his innocence. We will
discuss below the threats we are considering - i.e. the security
model - adding a ”rough outline” of the countermeasures.
The primary exchange of security material for establishing a
secure control channel takes place over the wireless channel
within the exchange of the IEV in the probe request and probe
response frames. Therefore the possibility to get the security
material is very constrained in space to the local observers.

1) Thread: Eavesdropping or man in the middle attack on
the wired control channel: An attacker may be able to sniff the
whole control traffic of multiple RRMUs which would allow
him to get inside views of future behavior or configuration of
the APs.

Countermeasure: The communication over the control
channel is encrypted by utilizing a one-hop cryptography key.
Every RRMU embeds its currently used symmetric group
key within its probe request and response frames and uses
this key for all outgoing traffic. Enhanced security between



distinct peers is achieved by encrypting unicast messages
using a symmetric unicast key obtained on demand using an
additional key exchange secured using the public keys which
were exchanged during the discovery phase.

2) Thread: Rogue Attack: A malicious user may be able
to drive through an area and collect the credentials to build
up the wired control channel to multiple local RRMUs which
would allow him to influence their behavior in a malicious
way.

Countermeasure: ResFi RRMUs periodically change the
utilized group encryption session keys in regular time intervals
via the local wireless channel. The interceptor would have to
place multiple local ”spy devices” remaining in a continuous
connection with him. Nevertheless, on the other hand in case
of irregular or suspicious behavior his IP address could be
checked.

3) Thread: Spoofing Attack: An attacker may try to mas-
querade as another valid RRMU by falsifying data.

Countermeasure: ResFi provides authenticity by the re-
quirement that all outgoing ResFi messages sent via the wired
backhaul have to be signed with the private key of the sender
which allows the receiver to validate the signature with the
corresponding public key exchanged during the discovery
phase.

4) Thread: Replay Attack: If an attacker may be able to
sniff control packets and send them unaltered but delayed
to the original receivers this could result in confusion or
misbehavior of the receiver APs RRMUs.

Countermeasure: All sent ResFi messages are equipped
with a unique sequence number.

IV. RESFI – DETAILED SPECIFICATION

A. Bootstrapping

After an ResFi enabled residential WiFi AP has booted up,
the ResFi agent is started, the first symmetric group key and
the RSA key pairs are generated and the discovery process
is initiated. For each detected adjacent AP a mutual key and
public IP exchange is performed over the wireless channel.
This process is also depicted in Fig. 2.
In a first step the ResFi agent of the newly booted up AP
(AP0) performs a full active scan on all available IEEE
802.11 RF channels. This step includes the sending of a
probe request1 including AP0’s ResFi credentials (public IP
of the RRM unit, currently used encryption key and public
RSA key, embedded in an IE within the probe request) on
each available RF channel which in turn triggers all ResFi
APs in vicinity (AP1..n) to send out their ResFi credentials
embedded in an IE within a probe response1 back to AP0,
cf. Fig. 2 tag 1. AP0 subscribes itself to the publish (Pub)
sockets of AP1..n using the public IP provided by the Probe
Responses and AP1..n subscribe themselves to the publish

1≈ 212 octets standard probe response size or ≈ 64 octets standard probe
request (depends on number of capabilities broadcasted in general by AP),
plus each time the size of the vendor specific big ResFi IE (IE header 6 octets
+ transient group encryption key and IV 32 octets + 15 octets IP address +
162 octets DER encoded RSA public key)
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Fig. 2. Overview of the system architecture of ResFi: the wireless channel
is used for exchange of configuration parameters (global IP of RRM unit,
transient group encryption key and public RSA key) which are afterwards
used for setting up the secure P2P out-of-band control channels over the
Internet.

(Pub) socket of AP0 using the public IP provided by the Probe
Request. Now AP0 is able to successfully receive, validate
and decrypt all messages sent via the wired backhaul by
AP1..n and AP1..n are able to successfully receive, validate
and decrypt all messages sent via the wired backhaul by AP0.
The formation of the secure bidirectional control channel is
completed. Broadcast messages to all neighbors are encrypted
using the transient symmetric group key, cf. Fig. 2, tag 2
while unicast messages are in advance encrypted using a
symmetric unicast session key (obtained on demand via an
additional key exchange encrypted using the public RSA keys
of the corresponding neighbor AP RRMUs), cf. Fig. 2, tag 3.
Moreover, all sent messages are signed using the private RSA
key of the corresponding sender.

B. Standard Mode of Operation

In the standard mode of operation the secure bidirectional
control channel was already successfully established. All par-
ticipating ResFi AP RRMUs are able to broadcast messages
encrypted with their own group session key and signed with
their own private RSA key to its entire one-hop ResFi neighbor
RRMUs via the backhaul overlay network. All participating
ResFi neighbor RRMUs are able to decrypt these messages,
verify their integrity and the authenticity of the sender AP
as a result of the mutual configuration data exchange in the
bootstrapping phase. In addition to the standard operation of
encrypting and signing outgoing messages and decrypting and
verifying incoming messages, ResFi APs enable to broadcast
messages to N-hop neighbors by performing TTL based for-
warding. Unicast messages which are in addition encrypted
with a unicast session key can only be sent within the one-
hop neighbor group. If needed, multi hop unicast messaging
with end-to-end encryption can be implemented on application
level, cf. Sec. VII-B.

1) Transient Group Encryption Key: During the standard
mode of operation no specific control messages except the key
change messages (KCM) have to be exchanged to enable the
work of the distributed network. The object of the random



periodic KCM and therefore of the group encryption key
change is twofold, first it provides confidentiality on the wired
backhaul channel and second it ensures that every group
participant is a real physical neighbor located in wireless
transmission range. All ResFi agents have the obligation to
periodically change their group encryption key and inform the
other group members by sending a KCM as broadcast via the
wired backhaul channel. The key change interval is bounded
to KCMI plus a randomly generated jitter. If a participating
ResFi AP has not sent a KCM during 3 ·KCMI all other group
members are removing the subscription to its publish socket.
A KCM always includes the current radio channel and the
SSID of the sender to allow the other group members to use a
single active frequency scan to obtain the new group session
encryption key. For the KCM always the old group key is used,
while all messages sent after the KCM are encrypted using the
new group key. In advance the new group key is set within the
probe response and probe request ResFi IEs for all new probe
response and probe request messages. ResFi APs that receive a
KCM perform a single frequency active scan for the given RF
channel and the given SSID which results in the reception of
the new group key as described in the bootstrapping section.
For the single frequency scans during runtime an empty probe
request is used to trigger the KCM sender to reply with a probe
response including the new group session key2. As ResFi
relies on FIFO sockets and the scan procedure is blocking,
all messages following the KCM, encrypted with the new
group key, can always be decrypted successfully. Using the
KCM scheme and single frequency/SSID scans performed by
neighbor APs, the necessity of performing a new full active
scan by the key changing AP is avoided. This prevents long
deafness times due to active scanning on other RF channels.

2) IP Address Change: If the public IP address of a ResFi
agent changes, the connectivity to all neighboring ResFi APs is
broken. To overcome the connectivity loss, the affected ResFi
agent repeats the bootstrap procedure described in Section
IV-A.

3) Radio Channel Change: As the wireless channel after
the boot-up phase is only used to obtain the symmetric group
encryption key updates whose retrieval is always triggered by a
KCM, which always includes the currently used radio channel,
radio channel changing does not interfere the standard mode
of operation of ResFi.

4) Simultaneous Start-up of ResFi Agents: Simultaneous
scanning phases of ResFi agents would prohibit the mutual
neighbor detection. ResFi solves this issue by utilizing a ran-
dom delay between 0 and 100 scanning slots before perform-
ing the full scan. This reduces the probability of overlapping
scanning phases of two concurrently booting ResFi agents with
respect to the birthday paradox to less than 1 %.

Additionally, to consider worst case scenarios, e.g. after
a regional power outage, which would cause the concurrent
start-up of all neighboring ResFi agents, ResFi executes single

2small ResFi IE (IE header 6 octets + transient group encryption key and
IV 32 octets)

frequency scans on all available channels, randomly and dis-
tributed over the first 24 h up time. This increases the neighbor
detection probability with respect to the average number of
17 neighbors [10], 32 available RF channels (Europe) and a
single frequency scan duration of 100 ms, cf. Sec.VIII-A, to
more than 99 %.

C. North-bound and South-Bound API

The northbound (NB) application API provided by ResFi
is shown in Table I. Using the API any application is able to
disseminate JSON messages to either APs in direct wireless
communication range or to perform a general N-Hop TTL
based flooding operation. Furthermore, unicast communication
to direct peers is also available. If a new message via the
framework is received the message processing can be con-
trolled by registering a callback. ResFi determines the wireless
context transparently for the user.

The ResFi framework can be easily integrated in existing
AP solutions by connecting the existing platform to the ResFi
southbound (SB) framework API listed in Table II. While the
framework SB API is mandatory, the SB API for the RRM
is only a suggestion and can be extended to meet further
application or algorithm needs. For this reason Table II only
provides a subset of possible functions, in particular the
RRM related part of the SB API shows the required functions
needed for the example applications in Section VII.

V. RESFI – IMPLEMENTATION DETAILS

The ResFi implementation consists of the three components
shown in Fig. 3. The ResFi framework agent is connected
via the framework southbound API to a modified version of
the software AP implementation Hostapd [15] via the also
modified interface Hostapd CLI which enables the embedding
of additional IE(s) within probe responses, and the IW tool
which is used as an interface to trigger a new WiFi scan
and to retrieve its results. Further the retrieval of the probe
request payloads is realized using inter process communication
(IPC) between hostapd and the ResFi agent. For our prototype
we utilized standard x86 machines running Ubuntu 14.04. As
the ResFi agent is programmed using platform independent
Python code, it can be easily ported to various platforms or
may be used as reference implementation. As the southbound
API prototype realization is Linux specific it can be easily
installed on all Linux based systems e.g. OpenWRT APs.

A. ResFi Agent

The ResFi Agent is implemented in Python and runs in user-
space. The publish/subscribe (Pub/Sub) sockets for the back-
haul wired overlay network are implemented using the Python
ØMQ library [16]. On top of ØMQ the JavaScript Object
Notation (JSON) is used. Detection of IP address changes is
implemented using Netlink events. To provide authenticity and
integrity, 1024 bit RSA key pairs are used and for communica-
tion confidentiality, symmetric session encryption is performed
using the Advanced Encryption Standard (AES) in Cipher



TABLE I
RESFI NORTH-BOUND API DESCRIPTION

North-bound general framework API Description
getNeighbors() returns list of current neighbor IDs.
sendToNeighbor(nodeID, json msg) sends a JSON message to particular neighboring AP additionally encrypted using symmetric unicast

session key.
sendToNeighbors(json msg, TTL) sends JSON broadcast message to each direct neighboring AP, if TTL is used, flooding to N-Hop neighbors

is performed.
regCallbacks(rxCb. newLinkCb, linkFailureCb) register callback functions used to deliver data to application (rxCallback→ new message for application,

newLinkCallback → new neighbor detected, linkFailureCallback → neighbor was disconnected).
registerNewApplication(naming pattern) To handle parallel ResFi applications, name space separation for message handling is used.
getResFiCredentials(param) if param == 1 returns public IP of RRMU, if param == 2 returns public RSA key
usePrivateRSAKey(data, mode) enables to utilize the private key of the RRMU. If mode == 1, returns signature computed over data, if

mode == 2, function decrypts data and returns plaintext.
North-bound RRM API (suggestion) Description
getNetworkLoad(type) returns current network load: 1=number of served STAs, 2=total TX Bytes in DL, etc.
getChannels() returns available RF channels.
setChannel(chan) set (primary) RF channel to be used
setTxPower(mac addr, dbm) set transmit power towards STA with mac addr
injectFrame(data) inject raw 802.11 frame
enableRTSCTS(mac addr, bool) enable usage of RTS/CTS towards STA with mac addr
startVAP(ssid, rxcb) start virtual AP with SSID, rxcb callback delivers received raw 802.11 frames.
deauthenticateSTA(mac) deauthenticate currently associated STA

TABLE II
RESFI SOUTH-BOUND API DESCRIPTION

South-bound framework API Description
getWiredInterface() enables ResFi to get the wired interface with IP access to backhaul Internet.
subscribeToProbeRequests() enables ResFi to retrieve the probe request payload from incoming probe requests.
addIEtoProbeResponses() enables ResFi to add/modify additional IE(s) to probe responses
performActiveScan() enables ResFi to start full/single active scan, takes add. IE which is added to probe req.
South-bound RRM API (suggestion) Description
{set|get}RfChannel() get/set currently used RF channel
{set|get}txPower(mac addr) get/set transmission power to be used to STA mac addr
{set|get}ClientInfo() get information about associated STAs (e.g. MAC, capabilities, RSSI, RX/TX count) or modify settings

(e.g. disconnect, priority, RTS/CTS usage, (dis)associate STA, (un)blacklist STA)
{getRx|getTx}Stats(mac addr) get information about sent/received packets and bytes towards STA mac addr
injectRawFrame(data) inject raw 802.11 frame into wireless interface
startVAP(ssid, buffer) start new virtual AP with given SSID, all incoming data is saved in buffer.
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Fig. 3. Overview of components in the ResFi prototype.

Feedback Mode (CFB) with 128 bit key size. All security
related functionality has been implemented by utilizing the
PyCrypto Library [17] and can be easily adapted to the needed
purpose (e.g. different key-size, cipher mode or algorithm).

B. Hostapd, Hostapd CLI and the IW Tool

Hostapd is responsible for performing all the AP manage-
ment functionality on Linux based platforms. This includes the
handling of probe requests and sending the probe responses.
We modified hostapd in version 2.1 and the runtime interface
hostapd cli to enable first, the embedding of additional IE(s)
to all probe responses and second, the retrieval of the IE(s)

from all received probe requests. Besides also the retrieval of
the current AP parameters is enabled. The ResFi Agent calls
hostapd cli to embed the public IP and the security keys into
the probe response frames and to read the AP parameters. The
probe request payload is retrieved using an additional ØMQ
Pub/Sub socket to allow IPC between hostapd and the ResFi
agent.

The IW tool [18] can be used to configure the WiFi driver.
IW internally uses Netlink communication to enable user-
space / kernel-space communication. We utilized the IW tool
in version 4.3. The ResFi Agent calls IW to start and retrieve
the results of an active WiFi scan on a single or over multiple
channels and for a specific or unspecific SSID. Moreover, the
IW tool is used to embed the additional ResFi IE(s) within
the probe request messages used during the boot process.

VI. RESFI MININET EMULATION

In order to offer the application developer an easy way to
test own RRM algorithms, before deploying them in a real
testbed, the ResFi framework allows the emulation of typical
residential networks taking both the wireless access as well
as the wired backbone network into account. This is achieved
by running ResFi in Mininet [3], a container-based emulation
which is able to emulate large network topologies on a
single computer. Specifically, we emulate the wired Internet
backhaul using the reported last-mile latencies and throughput
values from [14]. Moreover, the wireless channel which is



used by ResFi for exchanging wireless management frames is
also emulated. This is achieved using the following model:
all APs in mutual wireless reception range are connected
via a bidirectional link with fixed bandwidth (6 Mbps in
case of 802.11g/a), delay (depending on distance) and loss
characteristics (configurable parameter) to the same switch.
Finally, the AP density which defines the wireless topology is a
configurable parameter. Note, any application code which was
tested in the emulation environment can be used afterwards to
be deployed on real hardware without any modifications.

VII. RESFI APPLICATION EXAMPLES

Next we present examples for applications supported by
ResFi as a showcase.

A. Network Clustering

In order to reduce the information update overhead and
to optimize the use of the network bandwidth, obtaining a
hierarchical organization of the residential AP network is
desired. This can be achieved by clustering algorithms that
partition the AP nodes of the network into clusters [19]. Clus-
tering is crucial for controlling the spatial reuse of the shared
wireless channel (e.g., in terms of time division or frequency
division schemes). As a proof of concept we implemented
both the Distributed Clustering Algorithm (DCA) and the
Distributed Mobility-Adaptive Clustering (DMAC) proposed
by Basagni [19] as applications in ResFi.

B. End-to-End Security for N-Hop Neighbors

Basically, ResFi provides one-hop broadcast encryption by
utilizing a group encryption key which is obtained through the
initial exchange over the wireless channel and one-hop unicast
encryption using a symmetric neighbor specific key derived
on demand by an additional key exchange secured using the
public keys of the peers. If end-to-end security between N-hop
neighbors is needed, this functionality can be implemented as
ResFi application.
E.g. to enable encrypted communication in an established
cluster, cf. Sec. VII-A, the cluster head can utilize the getRes-
FiCredentials() function to obtain its public key and can then
propagate the key to all cluster nodes and vice versa. As then
all participants know the public keys of each other, end-to-end
signing and en/decryption (requires prior symmetric unicast
session key generation and exchange) of messages is possible
using the function usePrivateRSAkey(), see Table I.

C. Dynamic Channel Selection

The ResFi framework allows easy implementation of dis-
tributed dynamic channel selection schemes for WiFi APs.
According to the approach proposed by Mishra et al. [20]
each AP may periodically inform its direct neighbor APs about
its network load (e.g., number of served clients or flows),
recent airtime utilization on different channels, the presence of
WiFi and non-WiFi networks and its own radio channel. Such
information can be combined at each AP to select the least
congested channel. As a proof-of-concept we implemented the
aforementioned algorithm (Lst. 1).

Listing 1. Distributed channel assignment implemented using ResFi.
from common.resfi_api import AbstractResFiApp
class ResFiApp(AbstractResFiApp):
def __init__(self, log, agent):
AbstractResFiApp.__init__(self, log, ’distchan’, agent)
self.Hc = {}; self.Mc = {}; self.Sc = {}
self.jitter = 10; self.nbMap = {} # neighbor map
self.ch_lst = self.getAvailableChannels(True)
for ch in self.ch_lst: # init phase
self.Hc[ch] = 0; self.Sc[ch] = 0; self.Mc[ch] = 0

def run(self):
rnd_wait_time = random.uniform(0, self.jitter)
time.sleep(rnd_wait_time) # wait random time
while not self.isTerminated():
my_msg = {}; my_msg[’pl’] =
{’ch’:self.getChannel(),’ld’:self.getNetworkLoad()}

self.sendToNeighbors(my_msg, 1) # API call
rnd_wait_time = random.uniform(0, self.jitter/2)
time.sleep(rnd_wait_time)

def rx_cb(self, m): # ResFi rx callback
# analyze received message
self.nbMap[jd[’originator’]] =
{’ld’:float(m[’pl’][’ld’]),’ch’:int(m[’pl’][’ch’])}

my_load = self.getNetworkLoad() # my own network load
# channel assignment algorithm of Mishra et al.
wmax = 0 # calc wmax
for entry in self.nbMap: # for each neighbor
edge_weight = self.nbMap[entry][’ld’] + my_load
if edge_weight > wmax:
wmax = edge_weight

# calc Hc as proposed in Hminmax algorithm:
for ch in self.ch_lst: # for each channel
self.Hc[ch] = 0 # reset to zero
for entry in self.nbMap: # for each neighbor
if self.nbMap[entry][’ch’] == ch: # same channel
# select the max() weight; here load
self.Hc[ch] = max(self.Hc[ch],

my_load + self.nbMap[entry][’ld’])
# mark colors with the max conflict weight
for ch in self.ch_lst: # for each channel
self.Mc[ch] = 1 if self.Hc[ch] >= wmax else 0

# weight sum of all edges to AP whose nb has color c
for ch in self.ch_lst: # for each channel
self.Sc[ch] = 0 # reset to zero
for entry in self.nbMap: # for each neighbor
if self.nbMap[entry][’ch’] == ch: # same channel
self.Sc[ch] = self.Sc[ch]
+ my_load + self.nbMap[entry][’ld’]

# choose color with min sum conflict among all
# unmarked colors
best_ch = None; best_val = float("inf")
for ch in self.ch_lst:
if self.Sc[ch] < best_val and self.Mc[ch] == 0:
best_ch = ch; best_val = self.Sc[ch]

if best_ch is not None and
self.getChannel() != best_ch:
self.setChannel(best_ch) # found better sol.

D. Interference Management

The well-known hidden terminal problem [8] causes severe
co-channel interference (and thus packet loss) in dense WiFi
networks with multiple APs operating on the same radio chan-
nel. While the use of virtual channel reservation has a potential
to reduce the number of hidden nodes it creates significant
overhead by exchange of 802.11 RTS/CTS packets. Therefore,
an adaptive RTS/CTS scheme activated only on wireless links
suffering from hidden terminal problem would be favorable.
This can be easily achieved using our ResFi platform. For
this purpose each AP could perform passive hidden terminal
detection as proposed in [21] and inform its neighboring
APs about links potentially affected by hidden terminals for
which the RTC/CTS handshake would be enabled, see function
enableRTSCTS() in Table I.



E. Virtual Access Points (VAP)

The spatial area covered by a single WiFi AP is limited
especially when using the 5 GHz ISM band with unfavorable
propagation characteristics. In dense residential areas there
is a high probability that a significant parts of a residential
apartment is in excellent coverage of neighbor’s AP rather than
within the range of its own home AP [22]. A way to utilize
the neighboring AP is to deploy on-demand a virtual AP on
the neighboring AP and to tunnel all encrypted WiFi traffic
to the home AP [23]. This allows the client devices to always
authenticate against the home AP using the WPA passphrase
already stored in the device. There is no registration process;
no software to install on the device; not even any settings to
change. The on-demand deployment of VAPs can be easily
achieved using the ResFi framework. Specifically, each AP
has to disseminate information about the configured SSIDs in
its home AP to the neighboring AP where dynamically a VAP
is configured, see function startVAP() in Table I.

F. Client Handover for Load Balancing and Mobility Support

The BIGAP approach [2] enables soft handover operations
in centralized enterprise WiFi networks to enable client STA
mobility and load-balancing support without network outage.
Such soft handover can also be achieved in residential environ-
ments between the home AP and a neighboring AP by com-
bining the BIGAP approach with the ResFi VAP application
(cf. Sec. VII-E). If the client STA supports dynamic frequency
selection (DFS) and both, the current AP and the target AP are
operating on different RF channels, soft handover operations
are possible by injecting an additional beacon frame including
a channel switch announcement IE with the RF channel of
the target AP via the function injectFrame() executed on the
current AP. If no DFS support on the client STA is available,
hard-handover using the function deauthenticateSTA() on the
current AP enables a controlled handover. All aforementioned
functions are part of ResFi’s NB API, see Table I.

VIII. EVALUATION

The evaluation section is divided into two parts. First, we
evaluate the efficiency of some critical parts of our framework.
To this point we evaluate the scanning duration in a small
WiFi testbed at our premises experimentally and the control
overhead in the wireless channel analytically. The latter is
compared with the approach proposed in [12] extended to
multi-channel environments to which we refer as RxIP++.
Second, we conduct a holistic evaluation of ResFi and two of
the example applications from Sec. VII-C and VII-A in the
ORBIT radio grid testbed which is characterized by a very
dense deployment of wireless nodes.

A. Active vs. passive Scanning

During the start-up phase, ResFi performs a full WiFi scan
over all available RF channels. The long deafness duration
caused by this scan is only negigible during the start-up phase.
During the standard mode of operation only single frequency
scans for single SSIDs are utilized to keep the AP deafness
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Fig. 4. Scanning duration of a full scan (performed over all available WiFi
channels, errorbar shows standard deviation).
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Fig. 5. Scanning duration on single channel (errorbar shows standard
deviation).

as short as possible. In this experiment we measure the
duration of different active and passive scanning procedures
using diverse commercial off-the-shelf WiFi hardware. The
results are used in Sec. VIII-B to calculate the reconfiguration
overhead caused by ResFi’s periodic scanning procedures.

1) Methodology: The utilized WiFi chips are listed in Fig. 4
and 5. We used x86 machines with Ubuntu 14.04 and the
scanning calls were executed using the tool iw (cf. Sec. V-B).

2) Results: The durations of full WiFi scans are shown
in Fig. 4. We see that independent of the scanning mode, the
scanning durations strongly vary between different WiFi chips
and interconnection technology. In general, chipsets connected
via PCI show shorter scanning durations while USB connected
chips are slower. However, when the two different scanning
modes (passive or active) are evaluated it is obvious that active
scanning is always superior to passive scanning w.r.t. to the
scanning latency. The results of the latency experiment of
single frequency scans are depicted in Fig. 5, interestingly
the connection type whether USB or PCI does not affect
the scanning latency. Nevertheless, for single frequency scans
active scanning is also always faster than passive.

Takeaways: Single frequency scans always provide the
shortest latency in comparison to full scans (30 ms vs. 6.3 s
for AR9170). Active scanning is always faster than passive.

B. Reconfiguration Overhead

In the following we analyze the overhead in the wireless
channel due to periodically changing the transient symmetric
group encryption key.

1) Methodology: The overhead in the wireless channel is
due to the transmission of probe request and reply packets
which are sent on a basic bitrate (e.g. 6 Mbps in 802.11a/g).
Moreover, during a scanning operation for neighboring nodes
the AP is deaf and cannot handle data transmissions of
its associated client stations and hence is wasting valuable
airtime. Moreover, an associated station may disassociate if it
misses too many beacon frames. As shown in Section VIII-A,



the duration of a single active WiFi scan for a given SSID
on a particular radio channel takes between 30ms and 100ms
depending on the hardware. Hence, there is a tradeoff between
the rate at which the reconfiguration takes place and the airtime
available on the wireless channel for application data transfer.
Because in ResFi a reconfiguration at a single AP triggers the
scanning operation of each neighboring AP the expected AP
density plays a major role. We analyzed the data provided by
the large-scale measurement campaign of Biswas et al. [10]
whereas the number of neighboring APs in the 2.4 and 5 GHz
band is on average 16.8 and 5.1 respectively. To consider
virtual WiFi networks in which one physical AP broadcasts
multiple SSID and BSSIDs, we have included only BSSIDs
into the average neighbor computation in which the RSSI,
the Organizationally Unique Identifier (OUI) and the 802.11
capabilities are different. Note, the overhead in 2.4 GHz is also
larger than in 5 GHz because the management frames are sent
on a lower PHY bitrate, i.e. 1 vs. 6 Mbps.

Next, we give a detailed description of the overhead analysis
for both the beacon stuffing approach used in RxIP++ which
serves as baseline and the ResFi approach using probe request
and response management frames.

a) RxIP++: When using the approach from RxIP for
dissemination of configuration data the overhead is due to
the transmission of additional IEs in the beacon frames and
the required scanning overhead in multi-channel environments.
For a network of N co-located, i.e. in communication range,
APs the relative overhead for each AP can be computed as
follows:

ORxIP =
1

C
×N × TBeac−IE ×RBeac + (N − 1)Tscan (1)

where C is the total number of channels available, N is
the number of neighboring APs, TBeac−IE and RBeac are
the additional beacon overhead and beacon interval (10 Hz)
respectively. The first term represents the overhead due to the
additional transmission of IE in beacon frames. Note, that
due to multi-channel environment the APs are operating on
different radio channels, hence to get the overhead per channel
we have to divide the first term by the number of channels. The
second term represents the overhead due to scanning deafness.

b) ResFi: The overhead of the ResFi approach:

OResFi = (N − 1)(TPReq + TPRep) + (N − 1)Tscan

+
1

C
× (N − 1)× (N − 2)× (TPReq + TPRep) (2)

where the first and third term represent the overhead due to
transmission of probe request and reply messages and the
second term accounts for deafness due to scanning procedure.

2) Results: Using equations 1 and 2 we are able to cal-
culate the overhead for different AP densities, i.e. number of
neighboring APs. Here we assume that each AP performs a
single group encryption key update. Fig. 6 shows the relative
available airtime in the wireless data channel with an update
interval of 60 s, i.e. 1−Oproposed and 1−OBeacon respectively.
The results can be summarized as follows. In the 2.4 GHz and
5 GHz band the overhead for a single reconfiguration is highest
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with RxIP++, whereas using the proposed ResFi approach
which relies on probe request and probe response frames is
superior in both bands for a reconfiguration period of 60 s and
AP densities between 0 and 40. Next, we analyze the impact of
the reconfiguration rate on the available airtime in the wireless
data channel. The results are shown in Fig. 7. From a practical
point of view a maximum overhead of 1% is tolerable. Hence
the maximum reconfiguration rate is pretty low, i.e. update
every 60 and 20 s for the 2.4 and the 5 GHz band respectively.
However, for the envisioned residential AP scenario it is still
sufficient as we suggest to change the group encryption key
every minute. Again ResFi approach is superior in both bands.

Takeaways: There is a clear tradeoff between reconfigura-
tion rate and overhead in the wireless channel. The beacon-
stuffing approach (RxIP++) is not efficient in real residential
deployments with high AP densities.

C. Reconfiguration Latency

1) Methodology: In this experiment we analyze reconfig-
uration latency in ResFi due to changing configuration data,
e.g. group encryption session key. The reconfiguration latency
is composed of the delay due to transmission of the key
change message (KCM) over the wired out-of-band control
channel as well as the scanning delay due to active scanning
on a particular channel and given SSID. We considered two
different wired backhaul technologies. First, Gigabit Ethernet
as a very low latency backhaul which we use in our testbed.
It serves as a baseline. Second, the typically used backhaul
technology in residential WiFi deployment, i.e. cable/DSL. For
the latter we used the traffic control tool [24] to emulate the
last-mile latency in residential WiFi deployments as reported
by [14]. Note, the last-mile latency is the latency to the first
hop inside the ISP’s network and hence captures the latency
of the access link (DSL/cable). According to [14] most users
of cable ISPs are in the 0–10 ms interval whereas a significant
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Fig. 8. Reconfiguration latency due to changing encryption key (Conf. ≥
95%).

proportion of DSL users have last-mile latencies of more than
20 ms, with some users seeing last-mile latencies up to 60
ms. For the experiments we used x86 machines with Ubuntu
14.04 and Linksys AE1000 WiFi USB as APs.

2) Results: The results are shown in Fig. 8. We see that in
the worst case, i.e. DSL, the reconfiguration latency is around
165 ms which is 58 % higher as compared to Gigabit LAN.

Takeaways: Even with a DSL backhaul access the group
encryption key can be changed at most 6 times per second
which is more than sufficient to achieve the targeted level of
security.

D. Large Scale Testbed Evaluation

The goal of the following experiments is twofold. First,
we want to evaluate the performance of ResFi in very dense
network deployments. As metric we measure the achievable
TCP uplink throughput of simultaneous transmitting client
STAs in a very dense environment. Second, we want to analyze
ResFi’s two basic example applications, i.e. namely distributed
channel assignment and network clustering.

1) Methodology: To mimic a very high density residential
scenario consisting of multiple apartments and co-located
public hotspots, e.g. coffee shops, we evaluated ResFi in
the ORBIT radio grid testbed [25] where 15 and 42 nodes
where configured as APs and client STAs respectively. All
nodes are in one single collision domain, i.e. in mutual
wireless communication range. This enables us to emulate 12
apartments each with a single AP serving a single client STA
and three co-located public hotspots each with a single AP
serving 10 client STAs.
For the evaluation of the AP channel assignment algorithm,
cf. Sec.VII-C, the APs together with the ResFi agents were
sequentially started and configured on a randomly selected
RF channel. Thereafter the client STAs were connected to
corresponding APs. We limited the number of available RF
channels to four, i.e. channels 36, 48, 149 and 165. We gave
the ResFi agents time to settle down. Thereafter, the achievable
TCP/IP uplink throughput from all concurrently transmitting
client STAs was measured using iperf. As baseline we se-
lected a random channel assignment algorithm. Finally, the
implementation of the ResFi network clustering application,
cf. VII-A, was tested.

2) Results: As expected all ResFi agents reliably detected
each other and every ResFi agent established a secure point-
to-point connection to each of its neighboring APs.
The ResFi channel assignment algorithm has set the highly

loaded APs on exclusive RF channels whereas the lightly
loaded APs shared the same RF channel. The achieved average
uplink TCP throughput for each client STA is presented in
Fig. 9 as bar-plot. Moreover, the TCP uplink throughput using
the random channel assignment is presented as boxplot after
25 repetitions. In addition, Fig. 10 shows the uplink TCP
throughput of all STAs of both algorithms aggregated as
boxplots. We observe that the controlled channel assignment
using ResFi increases the overall fairness between the client
STAs, i.e. the median throughput is increased by 97% as
compared to baseline.
The ResFi clustering application was able to successfully built
clusters where all nodes within a cluster were able to agree
on the same cluster head.
Takeaways: ResFi performs well even in environment with
high AP density, i.e. every AP detects all participating ResFi
agents in radio range and enables secure communication with
them. Moreover, even a simple channel assignment algorithm
(< 50 lines of code) provides significant improvement.

IX. CONCLUSIONS AND AREAS FOR FURTHER RESEARCH

Up to our knowledge we have presented the first proposal
of a holistic platform supporting automatic establishment of
secure connectivity within a definable scope of neighborhood
and set of resource management supporting functions for
residential WiFi networks. Our proposal allows usage of legacy
hardware and avoids violation of the existing management
borders following out of the fragmented ownership structure.
ResFi was prototypically implemented and the source code is
provided to the community as open source. We believe that
there is a clear need for such a solution.

On our side the following further areas of work on this
framework have been already identified:

1) Many RRM require rather tight time synchronization
among the nodes. So far ResFi relies on Network
Time Protocol (NTP [26]) to time synchronize over
the Internet backhaul which achieves only an accuracy
of 10s of ms in WAN networks. We intend to extend
ResFi to provide over-the-air time synchronization using
either 802.11 beacons [12] or using 802.11 management
frames for exchanging IEEE 1588 Precision Time Pro-
tocol (PTP) frames [27].

2) The semantics of the network load - a notion introduced
in our API - is not unique. Different function of the air
time utilization, number of neighbors etc. have been used
in the past in this context. While in the actual version
we consider the air time utilization on the actually used
channel as the metric of the network load, we consider
offering a possibility to introduce in a flexible way a
definition of this parameter.

3) The notion of one-hop neighborhood is not unique,
either. At this moment we include in the one-hop
neighborhood any AP which provides a decodable probe
response to a probe request broadcasted with the lowest
bit rate. This notion might be generalized by attributing
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to the probe exchange some constraints on power with
which this exchange is performed.

While we believe to have covered a reasonable set of
requirements while keeping the solution relatively simple, we
have so far verified its merits only using a few very simple
cases studied. We hope that the usage of this framework
(enhanced by the open source approach) for more complex
RRM functions might lead to its further improvement.
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